Libra: Synergizing CUDA and Tensor Cores for High-Performance Sparse Matrix Multiplication
- URL: http://arxiv.org/abs/2506.22714v1
- Date: Sat, 28 Jun 2025 01:50:13 GMT
- Title: Libra: Synergizing CUDA and Tensor Cores for High-Performance Sparse Matrix Multiplication
- Authors: Jinliang Shi, Shigang Li, Youxuan Xu, Xueying Wang, Rongtian Fu, Zhi Ma, Tong Wu,
- Abstract summary: Modern accelerators are commonly equipped with cores and cores to accelerate sparse operators.<n>We show that utilizing one resource alone leads to inferior performance for sparse matrix multiplication, due to their respective limitations.<n>We propose a 2D-aware workload computation strategy find out the sweet point of task mapping operators, leveraging both the high performance of 2.9 cores and the low redundancy on cores.
- Score: 6.557224606759151
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse matrix multiplication operators (i.e., SpMM and SDDMM) are widely used in deep learning and scientific computing. Modern accelerators are commonly equipped with Tensor cores and CUDA cores to accelerate sparse operators. The former brings superior computing power but only for structured matrix multiplication, while the latter has relatively lower performance but with higher programming flexibility. In this work, we discover that utilizing one resource alone leads to inferior performance for sparse matrix multiplication, due to their respective limitations. To this end, we propose Libra, a systematic approach that enables synergistic computation between CUDA and Tensor cores to achieve the best performance for sparse matrix multiplication. Specifically, we propose a 2D-aware workload distribution strategy to find out the sweet point of task mapping for different sparse operators, leveraging both the high performance of Tensor cores and the low computational redundancy on CUDA cores. In addition, Libra incorporates systematic optimizations for heterogeneous computing, including hybrid load-balancing, finely optimized kernel implementations, and GPU-accelerated preprocessing. Extensive experimental results on H100 and RTX 4090 GPUs show that Libra outperforms the state-of-the-art by on average 3.1x (up to 9.23x) over DTC-SpMM and 2.9x (up to 3.9x) for end-to-end GNN applications. Libra opens up a new perspective for sparse operator acceleration by fully exploiting the heterogeneous computing resources on GPUs.
Related papers
- Multi-GPU RI-HF Energies and Analytic Gradients $-$ Towards High Throughput Ab Initio Molecular Dynamics [0.0]
This article presents an optimized algorithm and implementation for calculating resolution-of-the-identity Hartree-Fock energies and analytic gradients using multiple Graphics Processing Units (GPUs)
The algorithm is especially designed for high throughput emphab initio molecular dynamics simulations of small and medium size molecules (10-100 atoms)
arXiv Detail & Related papers (2024-07-29T00:14:10Z) - Boosting the effective performance of massively parallel tensor network
state algorithms on hybrid CPU-GPU based architectures via non-Abelian
symmetries [0.0]
Non-Abelian symmetry related tensor algebra based on Wigner-Eckhart theorem is fully detached from the conventional tensor network layer.
We have achieved an order of magnitude increase in performance with respect to results reported in arXiv:2305.05581 in terms of computational complexity.
Our solution has an estimated effective performance of 250-500 TFLOPS.
arXiv Detail & Related papers (2023-09-23T07:49:53Z) - INR-Arch: A Dataflow Architecture and Compiler for Arbitrary-Order
Gradient Computations in Implicit Neural Representation Processing [66.00729477511219]
Given a function represented as a computation graph, traditional architectures face challenges in efficiently computing its nth-order gradient.
We introduce INR-Arch, a framework that transforms the computation graph of an nth-order gradient into a hardware-optimized dataflow architecture.
We present results that demonstrate 1.8-4.8x and 1.5-3.6x speedup compared to CPU and GPU baselines respectively.
arXiv Detail & Related papers (2023-08-11T04:24:39Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
This work introduces a framework to develop efficient, portable Deep Learning and High Performance Computing kernels.
We decompose the kernel development in two steps: 1) Expressing the computational core using Processing Primitives (TPPs) and 2) Expressing the logical loops around TPPs in a high-level, declarative fashion.
We demonstrate the efficacy of our approach using standalone kernels and end-to-end workloads that outperform state-of-the-art implementations on diverse CPU platforms.
arXiv Detail & Related papers (2023-04-25T05:04:44Z) - Batch-efficient EigenDecomposition for Small and Medium Matrices [65.67315418971688]
EigenDecomposition (ED) is at the heart of many computer vision algorithms and applications.
We propose a QR-based ED method dedicated to the application scenarios of computer vision.
arXiv Detail & Related papers (2022-07-09T09:14:12Z) - Distributed Out-of-Memory NMF on CPU/GPU Architectures [1.0051474951635875]
We propose an efficient out-of-memory implementation of the Non-negative Matrix Factorization (NMF) algorithm for HPC systems.
Benchmark results show significant improvement of 32X to 76x speedup with the new implementation using GPU over the CPU-based NMFk.
arXiv Detail & Related papers (2022-02-19T03:49:21Z) - VersaGNN: a Versatile accelerator for Graph neural networks [81.1667080640009]
We propose textitVersaGNN, an ultra-efficient, systolic-array-based versatile hardware accelerator.
textitVersaGNN achieves on average 3712$times$ speedup with 1301.25$times$ energy reduction on CPU, and 35.4$times$ speedup with 17.66$times$ energy reduction on GPU.
arXiv Detail & Related papers (2021-05-04T04:10:48Z) - Sparse GPU Kernels for Deep Learning [24.94153856081836]
Deep learning applications have relatively moderate levels of sparsity that are not sufficient for existing sparse kernels to outperform their dense counterparts.
We develop high-performance GPU kernels for two sparse matrix operations widely applicable in neural networks.
Using our kernels, we demonstrate sparse Transformer and MobileNet models that achieve 1.2-2.1x speedups and up to 12.8x memory savings without sacrificing accuracy.
arXiv Detail & Related papers (2020-06-18T23:59:11Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
Kernel methods provide an elegant and principled approach to nonparametric learning, but so far could hardly be used in large scale problems.
Recent advances have shown the benefits of a number of algorithmic ideas, for example combining optimization, numerical linear algebra and random projections.
Here, we push these efforts further to develop and test a solver that takes full advantage of GPU hardware.
arXiv Detail & Related papers (2020-06-18T08:16:25Z) - PolyDL: Polyhedral Optimizations for Creation of High Performance DL
primitives [55.79741270235602]
We present compiler algorithms to automatically generate high performance implementations of Deep Learning primitives.
We develop novel data reuse analysis algorithms using the polyhedral model.
We also show that such a hybrid compiler plus a minimal library-use approach results in state-of-the-art performance.
arXiv Detail & Related papers (2020-06-02T06:44:09Z) - Heterogeneous CPU+GPU Stochastic Gradient Descent Algorithms [1.3249453757295084]
We study training algorithms for deep learning on heterogeneous CPU+GPU architectures.
Our two-fold objective -- maximize convergence rate and resource utilization simultaneously -- makes the problem challenging.
We show that the implementation of these algorithms achieves both faster convergence and higher resource utilization than on several real datasets.
arXiv Detail & Related papers (2020-04-19T05:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.