VSRM: A Robust Mamba-Based Framework for Video Super-Resolution
- URL: http://arxiv.org/abs/2506.22762v1
- Date: Sat, 28 Jun 2025 05:51:42 GMT
- Title: VSRM: A Robust Mamba-Based Framework for Video Super-Resolution
- Authors: Dinh Phu Tran, Dao Duy Hung, Daeyoung Kim,
- Abstract summary: Video super-resolution remains a major challenge in low-level vision tasks.<n>In this work, we propose VSRM, a novel framework for processing long sequences in video.<n> VSRM achieves state-of-the-art results on diverse benchmarks, establishing itself as a solid foundation for future research.
- Score: 1.8506868409351092
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Video super-resolution remains a major challenge in low-level vision tasks. To date, CNN- and Transformer-based methods have delivered impressive results. However, CNNs are limited by local receptive fields, while Transformers struggle with quadratic complexity, posing challenges for processing long sequences in VSR. Recently, Mamba has drawn attention for its long-sequence modeling, linear complexity, and large receptive fields. In this work, we propose VSRM, a novel \textbf{V}ideo \textbf{S}uper-\textbf{R}esolution framework that leverages the power of \textbf{M}amba. VSRM introduces Spatial-to-Temporal Mamba and Temporal-to-Spatial Mamba blocks to extract long-range spatio-temporal features and enhance receptive fields efficiently. To better align adjacent frames, we propose Deformable Cross-Mamba Alignment module. This module utilizes a deformable cross-mamba mechanism to make the compensation stage more dynamic and flexible, preventing feature distortions. Finally, we minimize the frequency domain gaps between reconstructed and ground-truth frames by proposing a simple yet effective Frequency Charbonnier-like loss that better preserves high-frequency content and enhances visual quality. Through extensive experiments, VSRM achieves state-of-the-art results on diverse benchmarks, establishing itself as a solid foundation for future research.
Related papers
- FCA2: Frame Compression-Aware Autoencoder for Modular and Fast Compressed Video Super-Resolution [68.77813885751308]
State-of-the-art (SOTA) compressed video super-resolution (CVSR) models face persistent challenges, including prolonged inference time, complex training pipelines, and reliance on auxiliary information.<n>We propose an efficient and scalable solution inspired by the structural and statistical similarities between hyperspectral images (HSI) and video data.<n>Our approach introduces a compression-driven dimensionality reduction strategy that reduces computational complexity, accelerates inference, and enhances the extraction of temporal information across frames.
arXiv Detail & Related papers (2025-06-13T07:59:52Z) - M4V: Multi-Modal Mamba for Text-to-Video Generation [58.51139515986472]
Text-to-video generation has enriched content and holds potential to create powerful world simulators.<n>Modeling the vast space remains computationally demanding, particularly when employing quadratic in sequence processing.<n>We introduce a Multi-Modal Mamba framework for text-to-video generation.<n>Experiments on text-to-video benchmarks demonstrate M4V's ability to produce high-quality videos while significantly lowering computational costs.
arXiv Detail & Related papers (2025-06-12T17:29:40Z) - RD-UIE: Relation-Driven State Space Modeling for Underwater Image Enhancement [59.364418120895]
Underwater image enhancement (UIE) is a critical preprocessing step for marine vision applications.<n>We develop a novel relation-driven Mamba framework for effective UIE (RD-UIE)<n>Experiments on underwater enhancement benchmarks demonstrate RD-UIE outperforms the state-of-the-art approach WMamba.
arXiv Detail & Related papers (2025-05-02T12:21:44Z) - MVQA: Mamba with Unified Sampling for Efficient Video Quality Assessment [24.053542031123985]
We present MVQA, a Mamba-based model designed for efficient video quality assessment (VQA)<n>USDS combines semantic patch sampling from low-resolution videos and distortion patch sampling from original-resolution videos.<n>Experiments show that the proposed MVQA, equipped with USDS, achieve comparable performance to state-of-the-art methods.
arXiv Detail & Related papers (2025-04-22T16:08:23Z) - Contrast: A Hybrid Architecture of Transformers and State Space Models for Low-Level Vision [3.574664325523221]
We propose textbfContrast, a hybrid SR model that combines textbfConvolutional, textbfTransformer, and textbfState Space components.<n>By integrating transformer and state space mechanisms, textbfContrast compensates for the shortcomings of each approach, enhancing both global context modeling and pixel-level accuracy.
arXiv Detail & Related papers (2025-01-23T03:34:14Z) - MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
Previous research on lightweight models has primarily focused on CNNs and Transformer-based designs.
We propose the MobileMamba framework, which balances efficiency and performance.
MobileMamba achieves up to 83.6% on Top-1, surpassing existing state-of-the-art methods.
arXiv Detail & Related papers (2024-11-24T18:01:05Z) - MLLA-UNet: Mamba-like Linear Attention in an Efficient U-Shape Model for Medical Image Segmentation [6.578088710294546]
Traditional segmentation methods struggle to address challenges such as high anatomical variability, blurred tissue boundaries, low organ contrast, and noise.
We propose MLLA-UNet (Mamba-Like Linear Attention UNet), a novel architecture that achieves linear computational complexity while maintaining high segmentation accuracy.
Experiments demonstrate that MLLA-UNet achieves state-of-the-art performance on six challenging datasets with 24 different segmentation tasks, including but not limited to FLARE22, AMOS CT, and ACDC, with an average DSC of 88.32%.
arXiv Detail & Related papers (2024-10-31T08:54:23Z) - DemMamba: Alignment-free Raw Video Demoireing with Frequency-assisted Spatio-Temporal Mamba [18.06907326360215]
Moire patterns, resulting from the interference of two similar repetitive patterns, are frequently observed during the capture of images or videos on screens.
This paper introduces a novel alignment-free raw video demoireing network with frequency-assisted-temporal Mamba.
Our proposed DemMamba surpasses state-of-the-art methods by 1.3 dB in PSNR, and also provides a satisfactory visual experience.
arXiv Detail & Related papers (2024-08-20T09:31:03Z) - MambaVT: Spatio-Temporal Contextual Modeling for robust RGB-T Tracking [51.28485682954006]
We propose a pure Mamba-based framework (MambaVT) to fully exploit intrinsic-temporal contextual modeling for robust visible-thermal tracking.
Specifically, we devise the long-range cross-frame integration component to globally adapt to target appearance variations.
Experiments show the significant potential of vision Mamba for RGB-T tracking, with MambaVT achieving state-of-the-art performance on four mainstream benchmarks.
arXiv Detail & Related papers (2024-08-15T02:29:00Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
We propose the Cross-Scanning Mamba, named CS-Mamba, that employs a Spatial-Spectral SSM for global-local balanced context encoding.<n>Experiment results show that our CS-Mamba achieves state-of-the-art performance and the masked training method can better reconstruct smooth features to improve the visual quality.
arXiv Detail & Related papers (2024-08-01T15:14:10Z) - IRSRMamba: Infrared Image Super-Resolution via Mamba-based Wavelet Transform Feature Modulation Model [7.842507196763463]
IRSRMamba is a novel framework integrating wavelet transform feature modulation for multi-scale adaptation.<n>IRSRMamba outperforms state-of-the-art methods in PSNR, SSIM, and perceptual quality.<n>This work establishes Mamba-based architectures as a promising direction for high-fidelity IR image enhancement.
arXiv Detail & Related papers (2024-05-16T07:49:24Z) - MambaIR: A Simple Baseline for Image Restoration with State-Space Model [46.827053426281715]
We introduce MambaIR, which introduces both local enhancement and channel attention to improve the vanilla Mamba.
Our method outperforms SwinIR by up to 0.45dB on image SR, using similar computational cost but with a global receptive field.
arXiv Detail & Related papers (2024-02-23T23:15:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.