Concept Pinpoint Eraser for Text-to-image Diffusion Models via Residual Attention Gate
- URL: http://arxiv.org/abs/2506.22806v1
- Date: Sat, 28 Jun 2025 08:17:19 GMT
- Title: Concept Pinpoint Eraser for Text-to-image Diffusion Models via Residual Attention Gate
- Authors: Byung Hyun Lee, Sungjin Lim, Seunggyu Lee, Dong Un Kang, Se Young Chun,
- Abstract summary: Concept erasing has been investigated with the goals of deleting target concepts in diffusion models while preserving other concepts with minimal distortion.<n>We propose a novel framework, dubbed Concept Pinpoint Eraser (CPE), by adding emphnonlinear Residual Attention Gates (ResAGs) that selectively erase (or cut) target concepts.<n>CPE outperforms prior arts by keeping diverse remaining concepts while deleting the target concepts with robustness against attack prompts.
- Score: 10.996274286143244
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Remarkable progress in text-to-image diffusion models has brought a major concern about potentially generating images on inappropriate or trademarked concepts. Concept erasing has been investigated with the goals of deleting target concepts in diffusion models while preserving other concepts with minimal distortion. To achieve these goals, recent concept erasing methods usually fine-tune the cross-attention layers of diffusion models. In this work, we first show that merely updating the cross-attention layers in diffusion models, which is mathematically equivalent to adding \emph{linear} modules to weights, may not be able to preserve diverse remaining concepts. Then, we propose a novel framework, dubbed Concept Pinpoint Eraser (CPE), by adding \emph{nonlinear} Residual Attention Gates (ResAGs) that selectively erase (or cut) target concepts while safeguarding remaining concepts from broad distributions by employing an attention anchoring loss to prevent the forgetting. Moreover, we adversarially train CPE with ResAG and learnable text embeddings in an iterative manner to maximize erasing performance and enhance robustness against adversarial attacks. Extensive experiments on the erasure of celebrities, artistic styles, and explicit contents demonstrated that the proposed CPE outperforms prior arts by keeping diverse remaining concepts while deleting the target concepts with robustness against attack prompts. Code is available at https://github.com/Hyun1A/CPE
Related papers
- TRACE: Trajectory-Constrained Concept Erasure in Diffusion Models [0.0]
Concept erasure aims to remove or suppress specific concept information in a generative model.<n>Trajectory-Constrained Attentional Concept Erasure (TRACE) is a novel method to erase targeted concepts from diffusion models.<n>TRACE achieves state-of-the-art performance, outperforming recent methods such as ANT, EraseAnything, and MACE in terms of removal efficacy and output quality.
arXiv Detail & Related papers (2025-05-29T10:15:22Z) - ACE: Attentional Concept Erasure in Diffusion Models [0.0]
Attentional Concept Erasure integrates a closed-form attention manipulation with lightweight fine-tuning.<n>We show that ACE achieves state-of-the-art concept removal efficacy and robustness.<n>Compared to prior methods, ACE better balances generality (erasing concept and related terms) and specificity (preserving unrelated content)
arXiv Detail & Related papers (2025-04-16T08:16:28Z) - Fine-Grained Erasure in Text-to-Image Diffusion-based Foundation Models [56.35484513848296]
FADE (Fine grained Attenuation for Diffusion Erasure) is an adjacency-aware unlearning algorithm for text-to-image generative models.<n>It removes target concepts with minimal impact on correlated concepts, achieving a 12% improvement in retention performance over state-of-the-art methods.
arXiv Detail & Related papers (2025-03-25T15:49:48Z) - Sparse Autoencoder as a Zero-Shot Classifier for Concept Erasing in Text-to-Image Diffusion Models [24.15603438969762]
Interpret then Deactivate (ItD) is a novel framework to enable precise concept removal in T2I diffusion models.<n>ItD uses a sparse autoencoder to interpret each concept as a combination of multiple features.<n>It can be easily extended to erase multiple concepts without requiring further training.
arXiv Detail & Related papers (2025-03-12T14:46:40Z) - TRCE: Towards Reliable Malicious Concept Erasure in Text-to-Image Diffusion Models [45.393001061726366]
Recent advances in text-to-image diffusion models enable photorealistic image generation, but they also risk producing malicious content, such as NSFW images.<n>To mitigate risk, concept erasure methods are studied to facilitate the model to unlearn specific concepts.<n>We propose TRCE, using a two-stage concept erasure strategy to achieve an effective trade-off between reliable erasure and knowledge preservation.
arXiv Detail & Related papers (2025-03-10T14:37:53Z) - DuMo: Dual Encoder Modulation Network for Precise Concept Erasure [75.05165577219425]
We propose our Dual encoder Modulation network (DuMo) which achieves precise erasure of inappropriate target concepts with minimum impairment to non-target concepts.<n>Our method achieves state-of-the-art performance on Explicit Content Erasure, Cartoon Concept Removal and Artistic Style Erasure, clearly outperforming alternative methods.
arXiv Detail & Related papers (2025-01-02T07:47:34Z) - How to Continually Adapt Text-to-Image Diffusion Models for Flexible Customization? [91.49559116493414]
We propose a novel Concept-Incremental text-to-image Diffusion Model (CIDM)
It can resolve catastrophic forgetting and concept neglect to learn new customization tasks in a concept-incremental manner.
Experiments validate that our CIDM surpasses existing custom diffusion models.
arXiv Detail & Related papers (2024-10-23T06:47:29Z) - Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models [76.39651111467832]
We introduce Reliable and Efficient Concept Erasure (RECE), a novel approach that modifies the model in 3 seconds without necessitating additional fine-tuning.
To mitigate inappropriate content potentially represented by derived embeddings, RECE aligns them with harmless concepts in cross-attention layers.
The derivation and erasure of new representation embeddings are conducted iteratively to achieve a thorough erasure of inappropriate concepts.
arXiv Detail & Related papers (2024-07-17T08:04:28Z) - Separable Multi-Concept Erasure from Diffusion Models [52.51972530398691]
We propose a Separable Multi-concept Eraser (SepME) to eliminate unsafe concepts from large-scale diffusion models.
The latter separates optimizable model weights, making each weight increment correspond to a specific concept erasure.
Extensive experiments indicate the efficacy of our approach in eliminating concepts, preserving model performance, and offering flexibility in the erasure or recovery of various concepts.
arXiv Detail & Related papers (2024-02-03T11:10:57Z) - Receler: Reliable Concept Erasing of Text-to-Image Diffusion Models via Lightweight Erasers [24.64639078273091]
Concept erasure in text-to-image diffusion models aims to disable pre-trained diffusion models from generating images related to a target concept.
We propose Reliable Concept Erasing via Lightweight Erasers (Receler)
arXiv Detail & Related papers (2023-11-29T15:19:49Z) - Ablating Concepts in Text-to-Image Diffusion Models [57.9371041022838]
Large-scale text-to-image diffusion models can generate high-fidelity images with powerful compositional ability.
These models are typically trained on an enormous amount of Internet data, often containing copyrighted material, licensed images, and personal photos.
We propose an efficient method of ablating concepts in the pretrained model, preventing the generation of a target concept.
arXiv Detail & Related papers (2023-03-23T17:59:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.