STR-Match: Matching SpatioTemporal Relevance Score for Training-Free Video Editing
- URL: http://arxiv.org/abs/2506.22868v1
- Date: Sat, 28 Jun 2025 12:36:19 GMT
- Title: STR-Match: Matching SpatioTemporal Relevance Score for Training-Free Video Editing
- Authors: Junsung Lee, Junoh Kang, Bohyung Han,
- Abstract summary: STR-Match is a training-free video editing system that produces visually appealing and coherent videos.<n> STR-Match consistently outperforms existing methods in both visual quality andtemporal consistency.
- Score: 35.50656689789427
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Previous text-guided video editing methods often suffer from temporal inconsistency, motion distortion, and-most notably-limited domain transformation. We attribute these limitations to insufficient modeling of spatiotemporal pixel relevance during the editing process. To address this, we propose STR-Match, a training-free video editing algorithm that produces visually appealing and spatiotemporally coherent videos through latent optimization guided by our novel STR score. The score captures spatiotemporal pixel relevance across adjacent frames by leveraging 2D spatial attention and 1D temporal modules in text-to-video (T2V) diffusion models, without the overhead of computationally expensive 3D attention mechanisms. Integrated into a latent optimization framework with a latent mask, STR-Match generates temporally consistent and visually faithful videos, maintaining strong performance even under significant domain transformations while preserving key visual attributes of the source. Extensive experiments demonstrate that STR-Match consistently outperforms existing methods in both visual quality and spatiotemporal consistency.
Related papers
- Low-Cost Test-Time Adaptation for Robust Video Editing [4.707015344498921]
Video editing is a critical component of content creation that transforms raw footage into coherent works aligned with specific visual and narrative objectives.<n>Existing approaches face two major challenges: temporal inconsistencies due to failure in capturing complex motion patterns, and overfitting to simple prompts arising from limitations in UNet backbone architectures.<n>We present Vid-TTA, a lightweight test-time adaptation framework that personalizes optimization for each test video during inference through self-supervised auxiliary tasks.
arXiv Detail & Related papers (2025-07-29T14:31:17Z) - Motion-Aware Concept Alignment for Consistent Video Editing [57.08108545219043]
We introduce MoCA-Video (Motion-Aware Concept Alignment in Video), a training-free framework bridging the gap between image-domain semantic mixing and video.<n>Given a generated video and a user-provided reference image, MoCA-Video injects the semantic features of the reference image into a specific object within the video.<n>We evaluate MoCA's performance using the standard SSIM, image-level LPIPS, temporal LPIPS, and introduce a novel metric CASS (Conceptual Alignment Shift Score) to evaluate the consistency and effectiveness of the visual shifts between the source prompt and the modified video frames
arXiv Detail & Related papers (2025-06-01T13:28:04Z) - Enhancing Low-Cost Video Editing with Lightweight Adaptors and Temporal-Aware Inversion [28.38307253613529]
We propose a framework that integrates temporal-spatial and semantic consistency with Baliteral DDIM inversion.<n>Our method significantly improves perceptual quality, text-image alignment, and temporal coherence, as demonstrated on the MSR-VTT dataset.
arXiv Detail & Related papers (2025-01-08T16:41:31Z) - MAKIMA: Tuning-free Multi-Attribute Open-domain Video Editing via Mask-Guided Attention Modulation [55.101611012677616]
Diffusion-based text-to-image (T2I) models have demonstrated remarkable results in global video editing tasks.<n>We present MAKIMA, a tuning-free MAE framework built upon pretrained T2I models for open-domain video editing.
arXiv Detail & Related papers (2024-12-28T02:36:51Z) - VideoDirector: Precise Video Editing via Text-to-Video Models [45.53826541639349]
Current video editing methods rely on text-to-video (T2V) models, which inherently lack temporal-coherence generative ability.<n>We propose a spatial-temporal decoupled guidance (STDG) and multi-frame null-text optimization strategy to provide pivotal temporal cues for more precise pivotal inversion.<n> Experimental results demonstrate that our method effectively harnesses the powerful temporal generation capabilities of T2V models.
arXiv Detail & Related papers (2024-11-26T16:56:53Z) - COVE: Unleashing the Diffusion Feature Correspondence for Consistent Video Editing [57.76170824395532]
Video editing is an emerging task, in which most current methods adopt the pre-trained text-to-image (T2I) diffusion model to edit the source video.<n>We propose COrrespondence-guided Video Editing (COVE) to achieve high-quality and consistent video editing.<n>COVE can be seamlessly integrated into the pre-trained T2I diffusion model without the need for extra training or optimization.
arXiv Detail & Related papers (2024-06-13T06:27:13Z) - Inflation with Diffusion: Efficient Temporal Adaptation for
Text-to-Video Super-Resolution [19.748048455806305]
We propose an efficient diffusion-based text-to-video super-resolution (SR) tuning approach.
We investigate different tuning approaches based on our inflated architecture and report trade-offs between computational costs and super-resolution quality.
arXiv Detail & Related papers (2024-01-18T22:25:16Z) - Edit Temporal-Consistent Videos with Image Diffusion Model [49.88186997567138]
Large-scale text-to-image (T2I) diffusion models have been extended for text-guided video editing.
T achieves state-of-the-art performance in both video temporal consistency and video editing capability.
arXiv Detail & Related papers (2023-08-17T16:40:55Z) - RIGID: Recurrent GAN Inversion and Editing of Real Face Videos [73.97520691413006]
GAN inversion is indispensable for applying the powerful editability of GAN to real images.
Existing methods invert video frames individually often leading to undesired inconsistent results over time.
We propose a unified recurrent framework, named textbfRecurrent vtextbfIdeo textbfGAN textbfInversion and etextbfDiting (RIGID)
Our framework learns the inherent coherence between input frames in an end-to-end manner.
arXiv Detail & Related papers (2023-08-11T12:17:24Z) - Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation [93.18163456287164]
This paper proposes a novel text-guided video-to-video translation framework to adapt image models to videos.
Our framework achieves global style and local texture temporal consistency at a low cost.
arXiv Detail & Related papers (2023-06-13T17:52:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.