Missing-Modality-Aware Graph Neural Network for Cancer Classification
- URL: http://arxiv.org/abs/2506.22901v1
- Date: Sat, 28 Jun 2025 14:31:00 GMT
- Title: Missing-Modality-Aware Graph Neural Network for Cancer Classification
- Authors: Sina Tabakhi, Haiping Lu,
- Abstract summary: Key challenge in learning from multimodal biological data is missing modalities, where all data from some modalities are missing for some patients.<n>We propose MAGNET (Missing-modality-Aware Graph neural NETwork) for direct prediction with partial modalities.<n>Experiments on three public multiomics datasets for cancer classification, with real-world instead of artificial missingness, show that MAGNET outperforms the state-of-the-art fusion methods.
- Score: 4.291589126905706
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A key challenge in learning from multimodal biological data is missing modalities, where all data from some modalities are missing for some patients. Current fusion methods address this by excluding patients with missing modalities, imputing missing modalities, or making predictions directly with partial modalities. However, they often struggle with diverse missing-modality patterns and the exponential growth of the number of such patterns as the number of modalities increases. To address these limitations, we propose MAGNET (Missing-modality-Aware Graph neural NETwork) for direct prediction with partial modalities, which introduces a patient-modality multi-head attention mechanism to fuse lower-dimensional modality embeddings based on their importance and missingness. MAGNET's complexity increases linearly with the number of modalities while adapting to missing-pattern variability. To generate predictions, MAGNET further constructs a patient graph with fused multimodal embeddings as node features and the connectivity determined by the modality missingness, followed by a conventional graph neural network. Experiments on three public multiomics datasets for cancer classification, with real-world instead of artificial missingness, show that MAGNET outperforms the state-of-the-art fusion methods. The data and code are available at https://github.com/SinaTabakhi/MAGNET.
Related papers
- ITCFN: Incomplete Triple-Modal Co-Attention Fusion Network for Mild Cognitive Impairment Conversion Prediction [12.893857146169045]
Alzheimer's disease (AD) is a common neurodegenerative disease among the elderly.<n>Early prediction and timely intervention of its prodromal stage, mild cognitive impairment (MCI), can decrease the risk of advancing to AD.
arXiv Detail & Related papers (2025-01-20T05:12:31Z) - HyperMM : Robust Multimodal Learning with Varying-sized Inputs [4.377889826841039]
HyperMM is an end-to-end framework designed for learning with varying-sized inputs.
We introduce a novel strategy for training a universal feature extractor using a conditional hypernetwork.
We experimentally demonstrate the advantages of our method in two tasks: Alzheimer's disease detection and breast cancer classification.
arXiv Detail & Related papers (2024-07-30T12:13:18Z) - MaxCorrMGNN: A Multi-Graph Neural Network Framework for Generalized
Multimodal Fusion of Medical Data for Outcome Prediction [3.2889220522843625]
We develop an innovative fusion approach called MaxCorr MGNN that models non-linear modality correlations within and across patients.
We then design, for the first time, a generalized multi-layered graph neural network (MGNN) for task-informed reasoning in multi-layered graphs.
We evaluate our model an outcome prediction task on a Tuberculosis dataset consistently outperforming several state-of-the-art neural, graph-based and traditional fusion techniques.
arXiv Detail & Related papers (2023-07-13T23:52:41Z) - Fusing Modalities by Multiplexed Graph Neural Networks for Outcome
Prediction in Tuberculosis [3.131872070347212]
We present a novel fusion framework using multiplexed graphs and derive a new graph neural network for learning from such graphs.
We present results that show that our proposed method outperforms state-of-the-art methods of fusing modalities for multi-outcome prediction on a large Tuberculosis (TB) dataset.
arXiv Detail & Related papers (2022-10-25T23:03:05Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
It is necessary to consider the behavior of the signals in each sensor separately, to take into account their correlation and hidden relationships with each other.
The graph nodes can be represented as data from the different sensors, and the edges can display the influence of these data on each other.
It was proposed to construct a graph during the training of graph neural network. This allows to train models on data where the dependencies between the sensors are not known in advance.
arXiv Detail & Related papers (2022-10-20T11:03:21Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
implicit graph neural networks (GNNs) have been proposed to capture long-range dependencies in underlying graphs.
We introduce and justify two weaknesses of implicit GNNs: the constrained expressiveness due to their limited effective range for capturing long-range dependencies, and their lack of ability to capture multiscale information on graphs at multiple resolutions.
We propose a multiscale graph neural network with implicit layers (MGNNI) which is able to model multiscale structures on graphs and has an expanded effective range for capturing long-range dependencies.
arXiv Detail & Related papers (2022-10-15T18:18:55Z) - Multi-modal Graph Learning for Disease Prediction [35.4310911850558]
We propose an end-to-end Multimodal Graph Learning framework (MMGL) for disease prediction.
Instead of defining the adjacency matrix manually as existing methods, the latent graph structure can be captured through a novel way of adaptive graph learning.
arXiv Detail & Related papers (2021-07-01T03:59:22Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients.
Existing prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume.
We propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net)
arXiv Detail & Related papers (2020-06-01T05:21:37Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
We propose a novel multimodal segmentation framework which is robust to the absence of imaging modalities.
Our network uses feature disentanglement to decompose the input modalities into the modality-specific appearance code.
We validate our method on the important yet challenging multimodal brain tumor segmentation task with the BRATS challenge dataset.
arXiv Detail & Related papers (2020-02-22T14:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.