Towards Explainable Bilingual Multimodal Misinformation Detection and Localization
- URL: http://arxiv.org/abs/2506.22930v1
- Date: Sat, 28 Jun 2025 15:43:06 GMT
- Title: Towards Explainable Bilingual Multimodal Misinformation Detection and Localization
- Authors: Yiwei He, Xiangtai Li, Zhenglin Huang, Yi Dong, Hao Fei, Jiangning Zhang, Baoyuan Wu, Guangliang Cheng,
- Abstract summary: BiMi is a framework that jointly performs region-level localization, cross-modal and cross-lingual consistency detection, and natural language explanation for misinformation analysis.<n>BiMiBench is a benchmark constructed by systematically editing real news images and subtitles.<n>BiMi outperforms strong baselines by up to +8.9 in classification accuracy, +15.9 in localization accuracy, and +2.5 in explanation BERTScore.
- Score: 64.37162720126194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing realism of multimodal content has made misinformation more subtle and harder to detect, especially in news media where images are frequently paired with bilingual (e.g., Chinese-English) subtitles. Such content often includes localized image edits and cross-lingual inconsistencies that jointly distort meaning while remaining superficially plausible. We introduce BiMi, a bilingual multimodal framework that jointly performs region-level localization, cross-modal and cross-lingual consistency detection, and natural language explanation for misinformation analysis. To support generalization, BiMi integrates an online retrieval module that supplements model reasoning with up-to-date external context. We further release BiMiBench, a large-scale and comprehensive benchmark constructed by systematically editing real news images and subtitles, comprising 104,000 samples with realistic manipulations across visual and linguistic modalities. To enhance interpretability, we apply Group Relative Policy Optimization (GRPO) to improve explanation quality, marking the first use of GRPO in this domain. Extensive experiments demonstrate that BiMi outperforms strong baselines by up to +8.9 in classification accuracy, +15.9 in localization accuracy, and +2.5 in explanation BERTScore, advancing state-of-the-art performance in realistic, multilingual misinformation detection. Code, models, and datasets will be released.
Related papers
- Improving Retrieval-Augmented Neural Machine Translation with Monolingual Data [9.67203800171351]
In many settings, in-domain monolingual target-side corpora are often available.<n>This work explores ways to take advantage of such resources by retrieving relevant segments directly in the target language.<n>In experiments with two RANMT architectures, we first demonstrate the benefits of such cross-lingual objectives in a controlled setting.<n>We then showcase our method on a real-world set-up, where the target monolingual resources far exceed the amount of parallel data.
arXiv Detail & Related papers (2025-04-30T15:41:03Z) - A Unit-based System and Dataset for Expressive Direct Speech-to-Speech Translation [38.88908101517807]
Our research introduces a novel, carefully curated multilingual dataset from various movie audio tracks.<n>Each dataset pair is precisely matched for paralinguistic information and duration.<n>We enhance this by integrating multiple prosody transfer techniques, aiming for translations that are accurate, natural-sounding, and rich in paralinguistic details.
arXiv Detail & Related papers (2025-02-01T09:24:32Z) - MMCFND: Multimodal Multilingual Caption-aware Fake News Detection for Low-resource Indic Languages [0.4062349563818079]
We introduce the Multimodal Multilingual dataset for Indic Fake News Detection (MMIFND)
This meticulously curated dataset consists of 28,085 instances distributed across Hindi, Bengali, Marathi, Malayalam, Tamil, Gujarati and Punjabi.
We propose the Multimodal Caption-aware framework for Fake News Detection (MMCFND)
arXiv Detail & Related papers (2024-10-14T11:59:33Z) - IGLUE: A Benchmark for Transfer Learning across Modalities, Tasks, and
Languages [87.5457337866383]
We introduce the Image-Grounded Language Understanding Evaluation benchmark.
IGLUE brings together visual question answering, cross-modal retrieval, grounded reasoning, and grounded entailment tasks across 20 diverse languages.
We find that translate-test transfer is superior to zero-shot transfer and that few-shot learning is hard to harness for many tasks.
arXiv Detail & Related papers (2022-01-27T18:53:22Z) - Improving Multilingual Translation by Representation and Gradient
Regularization [82.42760103045083]
We propose a joint approach to regularize NMT models at both representation-level and gradient-level.
Our results demonstrate that our approach is highly effective in both reducing off-target translation occurrences and improving zero-shot translation performance.
arXiv Detail & Related papers (2021-09-10T10:52:21Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z) - Simultaneous Machine Translation with Visual Context [42.88121241096681]
Simultaneous machine translation (SiMT) aims to translate a continuous input text stream into another language with the lowest latency and highest quality possible.
We analyse the impact of different multimodal approaches and visual features on state-of-the-art SiMT frameworks.
arXiv Detail & Related papers (2020-09-15T18:19:11Z) - A Bayesian Multilingual Document Model for Zero-shot Topic Identification and Discovery [1.9215779751499527]
The model is an extension of BaySMM [Kesiraju et al 2020] to the multilingual scenario.
We propagate the learned uncertainties through linear classifiers that benefit zero-shot cross-lingual topic identification.
We revisit cross-lingual topic identification in zero-shot settings by taking a deeper dive into current datasets.
arXiv Detail & Related papers (2020-07-02T19:55:08Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
Cross-lingual Choice of Plausible Alternatives (XCOPA) is a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages.
We evaluate a range of state-of-the-art models on this novel dataset, revealing that the performance of current methods falls short compared to translation-based transfer.
arXiv Detail & Related papers (2020-05-01T12:22:33Z) - Improving Massively Multilingual Neural Machine Translation and
Zero-Shot Translation [81.7786241489002]
Massively multilingual models for neural machine translation (NMT) are theoretically attractive, but often underperform bilingual models and deliver poor zero-shot translations.
We argue that multilingual NMT requires stronger modeling capacity to support language pairs with varying typological characteristics.
We propose random online backtranslation to enforce the translation of unseen training language pairs.
arXiv Detail & Related papers (2020-04-24T17:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.