Probabilistic Prototype Calibration of Vision-Language Models for Generalized Few-shot Semantic Segmentation
- URL: http://arxiv.org/abs/2506.22979v1
- Date: Sat, 28 Jun 2025 18:36:22 GMT
- Title: Probabilistic Prototype Calibration of Vision-Language Models for Generalized Few-shot Semantic Segmentation
- Authors: Jie Liu, Jiayi Shen, Pan Zhou, Jan-Jakob Sonke, Efstratios Gavves,
- Abstract summary: Generalized Few-Shot Semanticnative (GFSS) aims to extend a segmentation model to novel classes with only a few annotated examples.<n>We propose FewCLIP, a probabilistic prototype calibration framework over multi-modal prototypes from the pretrained CLIP.<n>We show FewCLIP significantly outperforms state-of-the-art approaches across both GFSS and class-incremental setting.
- Score: 75.18058114915327
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generalized Few-Shot Semantic Segmentation (GFSS) aims to extend a segmentation model to novel classes with only a few annotated examples while maintaining performance on base classes. Recently, pretrained vision-language models (VLMs) such as CLIP have been leveraged in GFSS to improve generalization on novel classes through multi-modal prototypes learning. However, existing prototype-based methods are inherently deterministic, limiting the adaptability of learned prototypes to diverse samples, particularly for novel classes with scarce annotations. To address this, we propose FewCLIP, a probabilistic prototype calibration framework over multi-modal prototypes from the pretrained CLIP, thus providing more adaptive prototype learning for GFSS. Specifically, FewCLIP first introduces a prototype calibration mechanism, which refines frozen textual prototypes with learnable visual calibration prototypes, leading to a more discriminative and adaptive representation. Furthermore, unlike deterministic prototype learning techniques, FewCLIP introduces distribution regularization over these calibration prototypes. This probabilistic formulation ensures structured and uncertainty-aware prototype learning, effectively mitigating overfitting to limited novel class data while enhancing generalization. Extensive experimental results on PASCAL-5$^i$ and COCO-20$^i$ datasets demonstrate that our proposed FewCLIP significantly outperforms state-of-the-art approaches across both GFSS and class-incremental setting. The code is available at https://github.com/jliu4ai/FewCLIP.
Related papers
- Just Shift It: Test-Time Prototype Shifting for Zero-Shot Generalization with Vision-Language Models [19.683461002518147]
Test-Time Prototype Shifting (TPS) is a pioneering approach designed to adapt vision-language models to test datasets using unlabeled test inputs.<n>TPS not only facilitates optimization-free prototype reuse for subsequent predictions but also enables seamless integration with current advancements in prompt engineering.<n>A notable aspect of our framework is its significantly reduced memory and computational demands when compared to conventional text-prompt tuning methods.
arXiv Detail & Related papers (2024-03-19T17:54:34Z) - Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
This paper revisits few-shot 3D point cloud semantic segmentation (FS-PCS)
We focus on two significant issues in the state-of-the-art: foreground leakage and sparse point distribution.
To address these issues, we introduce a standardized FS-PCS setting, upon which a new benchmark is built.
arXiv Detail & Related papers (2024-03-01T15:14:47Z) - Unsupervised Prototype Adapter for Vision-Language Models [29.516767588241724]
We design an unsupervised fine-tuning approach for vision-language models called Unsupervised Prototype Adapter (UP-Adapter)
Specifically, for the unannotated target datasets, we leverage the text-image aligning capability of CLIP to automatically select the most confident samples for each class.
After fine-tuning, the prototype model prediction is combined with the original CLIP's prediction by a residual connection to perform downstream recognition tasks.
arXiv Detail & Related papers (2023-08-22T15:28:49Z) - Boundary-Refined Prototype Generation: A General End-to-End Paradigm for Semi-Supervised Semantic Segmentation [23.00156170789867]
Semi-supervised semantic segmentation has attracted increasing attention in computer vision.
Current approaches isolate prototype generation from the main training framework.
We propose a novel end-to-end boundary-refined prototype generation (BRPG) method.
arXiv Detail & Related papers (2023-07-19T16:12:37Z) - Rethinking Semantic Segmentation: A Prototype View [126.59244185849838]
We present a nonparametric semantic segmentation model based on non-learnable prototypes.
Our framework yields compelling results over several datasets.
We expect this work will provoke a rethink of the current de facto semantic segmentation model design.
arXiv Detail & Related papers (2022-03-28T21:15:32Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
We propose a dual prototypical contrastive learning approach tailored to the few-shot semantic segmentation (FSS) task.
The main idea is to encourage the prototypes more discriminative by increasing inter-class distance while reducing intra-class distance in prototype feature space.
We demonstrate that the proposed dual contrastive learning approach outperforms state-of-the-art FSS methods on PASCAL-5i and COCO-20i datasets.
arXiv Detail & Related papers (2021-11-09T08:14:50Z) - A Closer Look at Prototype Classifier for Few-shot Image Classification [28.821731837776593]
We show that a prototype classifier works equally well without fine-tuning and meta-learning.
We derive a novel generalization bound for the prototypical network and show that focusing on the variance of the norm of a feature vector can improve performance.
arXiv Detail & Related papers (2021-10-11T08:28:43Z) - Prototype Completion for Few-Shot Learning [13.63424509914303]
Few-shot learning aims to recognize novel classes with few examples.
Pre-training based methods effectively tackle the problem by pre-training a feature extractor and then fine-tuning it through the nearest centroid based meta-learning.
We propose a novel prototype completion based meta-learning framework.
arXiv Detail & Related papers (2021-08-11T03:44:00Z) - Learning Sparse Prototypes for Text Generation [120.38555855991562]
Prototype-driven text generation is inefficient at test time as a result of needing to store and index the entire training corpus.
We propose a novel generative model that automatically learns a sparse prototype support set that achieves strong language modeling performance.
In experiments, our model outperforms previous prototype-driven language models while achieving up to a 1000x memory reduction.
arXiv Detail & Related papers (2020-06-29T19:41:26Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.