Spectra 1.1: Scaling Laws and Efficient Inference for Ternary Language Models
- URL: http://arxiv.org/abs/2506.23025v1
- Date: Sat, 28 Jun 2025 22:13:43 GMT
- Title: Spectra 1.1: Scaling Laws and Efficient Inference for Ternary Language Models
- Authors: Tejas Vaidhya, Ayush Kaushal, Vineet Jain, Francis Couture Harpin, Prashant Shishodia, Majid Behbahani, Yuriy Nevmyvaka, Irina Rish,
- Abstract summary: Large language models (LLMs) are increasingly used across research and industry applications, yet their inference efficiency remains a significant challenge.<n>We investigate ternary language models (TriLMs) that employ quantization-aware training to significantly reduce memory requirements.<n>We introduce Spectra-1.1, an open suite of TriLMs trained on up to 1.2 trillion tokens, demonstrating sustained performance gains at scale.
- Score: 12.98064202867316
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models (LLMs) are increasingly used across research and industry applications, yet their inference efficiency remains a significant challenge. As the computational power of modern GPU architectures continuously improves, their memory bandwidth and capacity have not scaled proportionally, creating a critical bottleneck during inference. To address this, we investigate ternary language models (TriLMs) that employ quantization-aware training to significantly reduce memory requirements. We first analyze the scalability of TriLMs by conducting a scaling law analysis, revealing that TriLMs benefit more from increasing training data than from scaling model parameters. Based on this observation, we introduce Spectra-1.1, an open suite of TriLMs trained on up to 1.2 trillion tokens, demonstrating sustained performance gains at scale. Furthermore, to improve inference efficiency, we propose novel 2-bit and 1.6-bit packing schemes for ternary weights, which demonstrate accelerated inference across various CPU architectures. Also, building on the 2-bit packing, we develop a GPU kernel called TriRun that accelerates end-to-end model inference by up to 5 times compared to floating-point baselines. To encourage further exploration and development of TriLMs, we will release the Spectra-1.1 suite and TriRun inference kernels. Overall, our work lays the foundation for building and deploying efficient LLMs, providing a valuable resource for the research community.
Related papers
- EfficientLLM: Efficiency in Large Language Models [64.3537131208038]
Large Language Models (LLMs) have driven significant progress, yet their growing counts and context windows incur prohibitive compute, energy, and monetary costs.<n>We introduce EfficientLLM, a novel benchmark and the first comprehensive empirical study evaluating efficiency techniques for LLMs at scale.
arXiv Detail & Related papers (2025-05-20T02:27:08Z) - Scaling Laws for Speculative Decoding [7.618542964397237]
This study investigates speculative decoding techniques through dense language models (LLMs)<n>We discover Log-linear Scaling Laws (Theorem 1.1, 1.2 and 1.3) governing draft model acceptance rate (or decoding speed) across three dimensions.<n>We achieve Scylla, which coordinates multi-dimensional scaling for popular LLMs.
arXiv Detail & Related papers (2025-05-08T11:10:15Z) - Pangu Ultra MoE: How to Train Your Big MoE on Ascend NPUs [111.69640966866059]
Sparse large language models (LLMs) with Mixture of Experts (MoE) and close to a trillion parameters are dominating the realm of most capable language models.<n>In this paper, we aim to uncover a recipe to harness such scale on Ascend NPUs.<n>The key goals are better usage of the computing resources under the dynamic sparse model structures and materializing the expected performance gain on the actual hardware.
arXiv Detail & Related papers (2025-05-07T15:46:36Z) - T1: Advancing Language Model Reasoning through Reinforcement Learning and Inference Scaling [52.34735382627312]
Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.<n>Existing approaches mainly rely on imitation learning and struggle to achieve effective test-time scaling.<n>We present T1 to scale reinforcement learning by encouraging exploration and understand inference scaling.
arXiv Detail & Related papers (2025-01-20T18:33:33Z) - Search for Efficient Large Language Models [52.98684997131108]
Large Language Models (LLMs) have long held sway in the realms of artificial intelligence research.
Weight pruning, quantization, and distillation have been embraced to compress LLMs, targeting memory reduction and inference acceleration.
Most model compression techniques concentrate on weight optimization, overlooking the exploration of optimal architectures.
arXiv Detail & Related papers (2024-09-25T21:32:12Z) - Building on Efficient Foundations: Effectively Training LLMs with Structured Feedforward Layers [16.253898272659242]
State-of-the-art results in large language models (LLMs) often rely on scale, which becomes computationally expensive.
Our study focuses on transformer-based LLMs, specifically targeting the computationally intensive feedforward networks (FFNs)
We show that wide and structured networks can utilize training FLOPs more efficiently, with fewer parameters and lower loss than dense models at their optimal trade-off.
arXiv Detail & Related papers (2024-06-24T08:43:21Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
Large language models (LLMs) have revolutionized Natural Language Processing (NLP), but their size creates computational bottlenecks.
We introduce a novel approach to create accurate, sparse foundational versions of performant LLMs.
We show a total speedup on CPUs for sparse-quantized LLaMA models of up to 8.6x.
arXiv Detail & Related papers (2024-05-06T16:03:32Z) - Recurrent Drafter for Fast Speculative Decoding in Large Language Models [18.342742904042673]
We present Recurrent Drafter, an advanced speculative decoding approach.<n>It achieves state-of-the-art speedup for large language models (LLMs) inference.
arXiv Detail & Related papers (2024-03-14T23:40:56Z) - Flash-LLM: Enabling Cost-Effective and Highly-Efficient Large Generative
Model Inference with Unstructured Sparsity [12.663030430488922]
We propose Flash-LLM for enabling low-cost and highly-efficient large generative model inference on high-performance Cores.
At SpMM kernel level, Flash-LLM significantly outperforms the state-of-the-art library, i.e., Sputnik and SparTA by an average of 2.9x and 1.5x, respectively.
arXiv Detail & Related papers (2023-09-19T03:20:02Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
Main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, for single batch inference.
We introduce SqueezeLLM, a post-training quantization framework that enables lossless compression to ultra-low precisions of up to 3-bit.
Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format.
arXiv Detail & Related papers (2023-06-13T08:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.