Double-Diffusion: Diffusion Conditioned Diffusion Probabilistic Model For Air Quality Prediction
- URL: http://arxiv.org/abs/2506.23053v1
- Date: Sun, 29 Jun 2025 01:45:47 GMT
- Title: Double-Diffusion: Diffusion Conditioned Diffusion Probabilistic Model For Air Quality Prediction
- Authors: Hanlin Dong, Arian Prabowo, Hao Xue, Flora D. Salim,
- Abstract summary: Double-Diffusion is a novel diffusion probabilistic model that harnesses the power of known physics to guide air quality forecasting withtemporality.<n>Double-Diffusion ranks first in most reallife datasets compared with other probabilistic models.
- Score: 8.795924270950099
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Air quality prediction is a challenging forecasting task due to its spatio-temporal complexity and the inherent dynamics as well as uncertainty. Most of the current models handle these two challenges by applying Graph Neural Networks or known physics principles, and quantifying stochasticity through probabilistic networks like Diffusion models. Nevertheless, finding the right balancing point between the certainties and uncertainties remains an open question. Therefore, we propose Double-Diffusion, a novel diffusion probabilistic model that harnesses the power of known physics to guide air quality forecasting with stochasticity. To the best of our knowledge, while precedents have been made of using conditional diffusion models to predict air pollution, this is the first attempt to use physics as a conditional generative approach for air quality prediction. Along with a sampling strategy adopted from image restoration and a new denoiser architecture, Double-Diffusion ranks first in most evaluation scenarios across two real-life datasets compared with other probabilistic models, it also cuts inference time by 50% to 30% while enjoying an increase between 3-12% in Continuous Ranked Probabilistic Score (CRPS).
Related papers
- Air Quality Prediction with Physics-Guided Dual Neural ODEs in Open Systems [26.70737906860735]
Air pollution significantly threatens human health and ecosystems, necessitating effective air quality prediction to inform public policy.<n>Traditional approaches are generally categorized into physics-based and data-driven models.<n>We propose AirDualODE, a novel physics-guided approach that integrates dual branches of Neural temporalODE.
arXiv Detail & Related papers (2024-10-25T13:56:13Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - AirPhyNet: Harnessing Physics-Guided Neural Networks for Air Quality
Prediction [40.58819011476455]
This paper presents a novel approach named Physics guided Neural Network for Air Quality Prediction (AirPhyNet)
We leverage two well-established physics principles of air particle movement (diffusion and advection) by representing them as differential equation networks.
Experiments on two real-world benchmark datasets demonstrate that AirPhyNet outperforms state-of-the-art models for different testing scenarios.
arXiv Detail & Related papers (2024-02-06T07:55:54Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Benchmarking Autoregressive Conditional Diffusion Models for Turbulent Flow Simulation [26.520247496906492]
In this work, we analyze if fully data-driven fluid solvers that utilize an autoregressive rollout based on conditional diffusion models are a viable option to address this challenge.<n>To quantitatively and qualitatively benchmark the performance of various flow prediction approaches, three challenging 2D scenarios including incompressible and transonic flows, as well as isotropic turbulence are employed.<n>We find that even simple diffusion-based approaches can outperform multiple established flow prediction methods in terms of accuracy and temporal stability, while being on par with state-of-the-art stabilization techniques like unrolling at training time.
arXiv Detail & Related papers (2023-09-04T18:01:42Z) - PreDiff: Precipitation Nowcasting with Latent Diffusion Models [28.52267957954304]
We develop a conditional latent diffusion model capable of probabilistic forecasts.
We incorporate an explicit knowledge alignment mechanism to align forecasts with domain-specific physical constraints.
arXiv Detail & Related papers (2023-07-19T19:19:13Z) - Human Trajectory Forecasting with Explainable Behavioral Uncertainty [63.62824628085961]
Human trajectory forecasting helps to understand and predict human behaviors, enabling applications from social robots to self-driving cars.
Model-free methods offer superior prediction accuracy but lack explainability, while model-based methods provide explainability but cannot predict well.
We show that BNSP-SFM achieves up to a 50% improvement in prediction accuracy, compared with 11 state-of-the-art methods.
arXiv Detail & Related papers (2023-07-04T16:45:21Z) - DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising
Diffusion Models [53.67562579184457]
This paper focuses on probabilistic STG forecasting, which is challenging due to the difficulty in modeling uncertainties and complex dependencies.
We present the first attempt to generalize the popular denoising diffusion models to STGs, leading to a novel non-autoregressive framework called DiffSTG.
Our approach combines the intrinsic-temporal learning capabilities STNNs with the uncertainty measurements of diffusion models.
arXiv Detail & Related papers (2023-01-31T13:42:36Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.