Frequency-enhanced Multi-granularity Context Network for Efficient Vertebrae Segmentation
- URL: http://arxiv.org/abs/2506.23086v1
- Date: Sun, 29 Jun 2025 04:53:02 GMT
- Title: Frequency-enhanced Multi-granularity Context Network for Efficient Vertebrae Segmentation
- Authors: Jian Shi, Tianqi You, Pingping Zhang, Hongli Zhang, Rui Xu, Haojie Li,
- Abstract summary: We introduce a Frequency-enhanced Multi-granularity Context Network (FMC-Net) to improve vertebrae segmentation accuracy.<n>For the high-frequency components, we apply a High-frequency Feature Refinement (HFR) to amplify the prominence of key features.<n>For the low-frequency components, we use a Multi-granularity State Space Model (MG-SSM) to aggregate feature representations with different receptive fields.
- Score: 33.99418884128739
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated and accurate segmentation of individual vertebra in 3D CT and MRI images is essential for various clinical applications. Due to the limitations of current imaging techniques and the complexity of spinal structures, existing methods still struggle with reducing the impact of image blurring and distinguishing similar vertebrae. To alleviate these issues, we introduce a Frequency-enhanced Multi-granularity Context Network (FMC-Net) to improve the accuracy of vertebrae segmentation. Specifically, we first apply wavelet transform for lossless downsampling to reduce the feature distortion in blurred images. The decomposed high and low-frequency components are then processed separately. For the high-frequency components, we apply a High-frequency Feature Refinement (HFR) to amplify the prominence of key features and filter out noises, restoring fine-grained details in blurred images. For the low-frequency components, we use a Multi-granularity State Space Model (MG-SSM) to aggregate feature representations with different receptive fields, extracting spatially-varying contexts while capturing long-range dependencies with linear complexity. The utilization of multi-granularity contexts is essential for distinguishing similar vertebrae and improving segmentation accuracy. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches on both CT and MRI vertebrae segmentation datasets. The source code is publicly available at https://github.com/anaanaa/FMCNet.
Related papers
- Learning Multi-scale Spatial-frequency Features for Image Denoising [58.883244886588336]
We propose a novel multi-scale adaptive dual-domain network (MADNet) for image denoising.<n>We use image pyramid inputs to restore noise-free results from low-resolution images.<n>In order to realize the interaction of high-frequency and low-frequency information, we design an adaptive spatial-frequency learning unit.
arXiv Detail & Related papers (2025-06-19T13:28:09Z) - Denoising via Repainting: an image denoising method using layer wise medical image repainting [6.195127726026568]
We propose a multi-scale approach that integrates anisotropic Gaussian filtering and progressive Bezier-path redrawing.<n>Our method constructs a scale-space pyramid to mitigate noise while preserving structural details.<n> Empirical results on multiple MRI datasets demonstrate consistent improvements in PSNR and SSIM over competing methods.
arXiv Detail & Related papers (2025-03-11T06:54:37Z) - Motion Artifact Removal in Pixel-Frequency Domain via Alternate Masks and Diffusion Model [58.694932010573346]
Motion artifacts present in magnetic resonance imaging (MRI) can seriously interfere with clinical diagnosis.<n>We propose a novel unsupervised purification method which leverages pixel-frequency information of noisy MRI images to guide a pre-trained diffusion model to recover clean MRI images.
arXiv Detail & Related papers (2024-12-10T15:25:18Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
We propose a unified MRI reconstruction model robust to various measurement undersampling patterns and image resolutions.<n>Our model improves SSIM by 11% and PSNR by 4 dB over a state-of-the-art CNN (End-to-End VarNet) with 600$times$ faster inference than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - Efficient MRI Parallel Imaging Reconstruction by K-Space Rendering via Generalized Implicit Neural Representation [16.63720411275398]
This study presents a generalized implicit neural representation (INR)-based framework for MRI PI reconstruction.<n>The proposed method overcomes limitations by leveraging prior knowledge of voxel-specific features.<n>Experiments on publicly available MRI datasets demonstrate the superior performance of the proposed method.
arXiv Detail & Related papers (2023-09-12T09:07:03Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Convolutional neural network based on sparse graph attention mechanism
for MRI super-resolution [0.34410212782758043]
Medical image super-resolution (SR) reconstruction using deep learning techniques can enhance lesion analysis and assist doctors in improving diagnostic efficiency and accuracy.
Existing deep learning-based SR methods rely on convolutional neural networks (CNNs), which inherently limit the expressive capabilities of these models.
We propose an A-network that utilizes multiple convolution operator feature extraction modules (MCO) for extracting image features.
arXiv Detail & Related papers (2023-05-29T06:14:22Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
We conduct experiments on three publicly available datasets and evaluate the effect of different preprocessing steps in deep neural networks.
Our results demonstrate that most popular standardization steps add no value to the network performance.
We suggest that image intensity normalization approaches do not contribute to model accuracy because of the reduction of signal variance with image standardization.
arXiv Detail & Related papers (2022-04-11T17:29:36Z) - Multimodal-Boost: Multimodal Medical Image Super-Resolution using
Multi-Attention Network with Wavelet Transform [5.416279158834623]
Loss of corresponding image resolution degrades the overall performance of medical image diagnosis.
Deep learning based single image super resolution (SISR) algorithms has revolutionized the overall diagnosis framework.
This work proposes generative adversarial network (GAN) with deep multi-attention modules to learn high-frequency information from low-frequency data.
arXiv Detail & Related papers (2021-10-22T10:13:46Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
We propose a novel Multi-modal Aggregation Network, named MANet, which is capable of discovering complementary representations from a fully sampled auxiliary modality.
In our MANet, the representations from the fully sampled auxiliary and undersampled target modalities are learned independently through a specific network.
Our MANet follows a hybrid domain learning framework, which allows it to simultaneously recover the frequency signal in the $k$-space domain.
arXiv Detail & Related papers (2021-10-15T13:16:59Z) - Joint Frequency and Image Space Learning for MRI Reconstruction and
Analysis [7.821429746599738]
We show that neural network layers that explicitly combine frequency and image feature representations can be used as a versatile building block for reconstruction from frequency space data.
The proposed joint learning schemes enable both correction of artifacts native to the frequency space and manipulation of image space representations to reconstruct coherent image structures at every layer of the network.
arXiv Detail & Related papers (2020-07-02T23:54:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.