Aggregating Local Saliency Maps for Semi-Global Explainable Image Classification
- URL: http://arxiv.org/abs/2506.23247v1
- Date: Sun, 29 Jun 2025 14:11:02 GMT
- Title: Aggregating Local Saliency Maps for Semi-Global Explainable Image Classification
- Authors: James Hinns, David Martens,
- Abstract summary: Deep learning dominates image classification tasks, yet understanding how models arrive at predictions remains a challenge.<n>Much research focuses on local explanations of individual predictions, such as saliency maps, which visualise the influence of specific pixels on a model's prediction.<n>We propose Segment Attribution Tables (SATs), a method for summarising local saliency explanations into (semi-)global insights.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning dominates image classification tasks, yet understanding how models arrive at predictions remains a challenge. Much research focuses on local explanations of individual predictions, such as saliency maps, which visualise the influence of specific pixels on a model's prediction. However, reviewing many of these explanations to identify recurring patterns is infeasible, while global methods often oversimplify and miss important local behaviours. To address this, we propose Segment Attribution Tables (SATs), a method for summarising local saliency explanations into (semi-)global insights. SATs take image segments (such as "eyes" in Chihuahuas) and leverage saliency maps to quantify their influence. These segments highlight concepts the model relies on across instances and reveal spurious correlations, such as reliance on backgrounds or watermarks, even when out-of-distribution test performance sees little change. SATs can explain any classifier for which a form of saliency map can be produced, using segmentation maps that provide named segments. SATs bridge the gap between oversimplified global summaries and overly detailed local explanations, offering a practical tool for analysing and debugging image classifiers.
Related papers
- Attri-Net: A Globally and Locally Inherently Interpretable Model for Multi-Label Classification Using Class-Specific Counterfactuals [4.384272169863716]
Interpretability is crucial for machine learning algorithms in high-stakes medical applications.
Attri-Net is an inherently interpretable model for multi-label classification that provides local and global explanations.
arXiv Detail & Related papers (2024-06-08T13:52:02Z) - Interpretable Network Visualizations: A Human-in-the-Loop Approach for Post-hoc Explainability of CNN-based Image Classification [5.087579454836169]
State-of-the-art explainability methods generate saliency maps to show where a specific class is identified.
We introduce a post-hoc method that explains the entire feature extraction process of a Convolutional Neural Network.
We also show an approach to generate global explanations by aggregating labels across multiple images.
arXiv Detail & Related papers (2024-05-06T09:21:35Z) - LICO: Explainable Models with Language-Image Consistency [39.869639626266554]
This paper develops a Language-Image COnsistency model for explainable image classification, termed LICO.
We first establish a coarse global manifold structure alignment by minimizing the distance between the distributions of image and language features.
We then achieve fine-grained saliency maps by applying optimal transport (OT) theory to assign local feature maps with class-specific prompts.
arXiv Detail & Related papers (2023-10-15T12:44:33Z) - Decom--CAM: Tell Me What You See, In Details! Feature-Level Interpretation via Decomposition Class Activation Map [23.71680014689873]
Class Activation Map (CAM) is widely used to interpret deep model predictions by highlighting object location.
This paper proposes a new two-stage interpretability method called the Decomposition Class Activation Map (Decom-CAM)
Our experiments demonstrate that the proposed Decom-CAM outperforms current state-of-the-art methods significantly.
arXiv Detail & Related papers (2023-05-27T14:33:01Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - Causal Transportability for Visual Recognition [70.13627281087325]
We show that standard classifiers fail because the association between images and labels is not transportable across settings.
We then show that the causal effect, which severs all sources of confounding, remains invariant across domains.
This motivates us to develop an algorithm to estimate the causal effect for image classification.
arXiv Detail & Related papers (2022-04-26T15:02:11Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
Existing works in self-supervised landmark detection are based on learning dense (pixel-level) feature representations from an image.
We introduce an approach to enhance the learning of dense equivariant representations in a self-supervised fashion.
We show that having such a prior in the feature extractor helps in landmark detection, even under drastically limited number of annotations.
arXiv Detail & Related papers (2022-04-06T17:48:18Z) - Graph Sampling Based Deep Metric Learning for Generalizable Person
Re-Identification [114.56752624945142]
We argue that the most popular random sampling method, the well-known PK sampler, is not informative and efficient for deep metric learning.
We propose an efficient mini batch sampling method called Graph Sampling (GS) for large-scale metric learning.
arXiv Detail & Related papers (2021-04-04T06:44:15Z) - Rethinking Semantic Segmentation Evaluation for Explainability and Model
Selection [12.786648212233116]
We introduce a new metric to assess region-based over- and under-segmentation.
We analyze and compare it to other metrics, demonstrating that the use of our metric lends greater explainability to semantic segmentation model performance in real-world applications.
arXiv Detail & Related papers (2021-01-21T03:12:43Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
Two neural co-attentions are incorporated into the classifier to capture cross-image semantic similarities and differences.
In addition to boosting object pattern learning, the co-attention can leverage context from other related images to improve localization map inference.
Our algorithm sets new state-of-the-arts on all these settings, demonstrating well its efficacy and generalizability.
arXiv Detail & Related papers (2020-07-03T21:53:46Z) - Explainable Deep Classification Models for Domain Generalization [94.43131722655617]
Explanations are defined as regions of visual evidence upon which a deep classification network makes a decision.
Our training strategy enforces a periodic saliency-based feedback to encourage the model to focus on the image regions that directly correspond to the ground-truth object.
arXiv Detail & Related papers (2020-03-13T22:22:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.