PGOV3D: Open-Vocabulary 3D Semantic Segmentation with Partial-to-Global Curriculum
- URL: http://arxiv.org/abs/2506.23607v1
- Date: Mon, 30 Jun 2025 08:13:07 GMT
- Title: PGOV3D: Open-Vocabulary 3D Semantic Segmentation with Partial-to-Global Curriculum
- Authors: Shiqi Zhang, Sha Zhang, Jiajun Deng, Yedong Shen, Mingxiao MA, Yanyong Zhang,
- Abstract summary: PGOV3D is a novel framework that introduces a Partial-to-Global curriculum for improving open-vocabulary 3D semantic segmentation.<n>We pre-train the model on partial scenes that provide dense semantic information but relatively simple geometry.<n>In the second stage, we fine-tune the model on complete scene-level point clouds, which are sparser and structurally more complex.
- Score: 20.206273757144547
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing open-vocabulary 3D semantic segmentation methods typically supervise 3D segmentation models by merging text-aligned features (e.g., CLIP) extracted from multi-view images onto 3D points. However, such approaches treat multi-view images merely as intermediaries for transferring open-vocabulary information, overlooking their rich semantic content and cross-view correspondences, which limits model effectiveness. To address this, we propose PGOV3D, a novel framework that introduces a Partial-to-Global curriculum for improving open-vocabulary 3D semantic segmentation. The key innovation lies in a two-stage training strategy. In the first stage, we pre-train the model on partial scenes that provide dense semantic information but relatively simple geometry. These partial point clouds are derived from multi-view RGB-D inputs via pixel-wise depth projection. To enable open-vocabulary learning, we leverage a multi-modal large language model (MLLM) and a 2D segmentation foundation model to generate open-vocabulary labels for each viewpoint, offering rich and aligned supervision. An auxiliary inter-frame consistency module is introduced to enforce feature consistency across varying viewpoints and enhance spatial understanding. In the second stage, we fine-tune the model on complete scene-level point clouds, which are sparser and structurally more complex. We aggregate the partial vocabularies associated with each scene and generate pseudo labels using the pre-trained model, effectively bridging the semantic gap between dense partial observations and large-scale 3D environments. Extensive experiments on ScanNet, ScanNet200, and S3DIS benchmarks demonstrate that PGOV3D achieves competitive performance in open-vocabulary 3D semantic segmentation.
Related papers
- Cross-Modal and Uncertainty-Aware Agglomeration for Open-Vocabulary 3D Scene Understanding [58.38294408121273]
We propose Cross-modal and Uncertainty-aware Agglomeration for Open-vocabulary 3D Scene Understanding dubbed CUA-O3D.<n>Our method addresses two key challenges: (1) incorporating semantic priors from VLMs alongside the geometric knowledge of spatially-aware vision foundation models, and (2) using a novel deterministic uncertainty estimation to capture model-specific uncertainties.
arXiv Detail & Related papers (2025-03-20T20:58:48Z) - Dense Multimodal Alignment for Open-Vocabulary 3D Scene Understanding [39.55810156545949]
We propose a Multimodal Alignment (DMA) framework to densely co-embed different modalities into a common space.
Our DMA method produces highly competitive open-vocabulary segmentation performance on various indoor and outdoor tasks.
arXiv Detail & Related papers (2024-07-13T05:39:17Z) - Segment Any 3D Object with Language [58.471327490684295]
We introduce Segment any 3D Object with LanguagE (SOLE), a semantic geometric and-aware visual-language learning framework with strong generalizability.
Specifically, we propose a multimodal fusion network to incorporate multimodal semantics in both backbone and decoder.
Our SOLE outperforms previous methods by a large margin on ScanNetv2, ScanNet200, and Replica benchmarks.
arXiv Detail & Related papers (2024-04-02T17:59:10Z) - GOV-NeSF: Generalizable Open-Vocabulary Neural Semantic Fields [50.68719394443926]
Generalizable Open-Vocabulary Neural Semantic Fields (GOV-NeSF) is a novel approach offering a generalizable implicit representation of 3D scenes with open-vocabulary semantics.
GOV-NeSF exhibits state-of-the-art performance in both 2D and 3D open-vocabulary semantic segmentation.
arXiv Detail & Related papers (2024-04-01T05:19:50Z) - UniM-OV3D: Uni-Modality Open-Vocabulary 3D Scene Understanding with Fine-Grained Feature Representation [46.998093729036334]
We propose a unified multimodal 3D open-vocabulary scene understanding network, namely UniM-OV3D.
To better integrate global and local features of the point clouds, we design a hierarchical point cloud feature extraction module.
To facilitate the learning of coarse-to-fine point-semantic representations from captions, we propose the utilization of hierarchical 3D caption pairs.
arXiv Detail & Related papers (2024-01-21T04:13:58Z) - Generalized Robot 3D Vision-Language Model with Fast Rendering and Pre-Training Vision-Language Alignment [55.11291053011696]
This work presents a framework for dealing with 3D scene understanding when the labeled scenes are quite limited.<n>To extract knowledge for novel categories from the pre-trained vision-language models, we propose a hierarchical feature-aligned pre-training and knowledge distillation strategy.<n>In the limited reconstruction case, our proposed approach, termed WS3D++, ranks 1st on the large-scale ScanNet benchmark.
arXiv Detail & Related papers (2023-12-01T15:47:04Z) - Panoptic Vision-Language Feature Fields [27.209602602110916]
We propose the first algorithm for open-vocabulary panoptic segmentation in 3D scenes.
Our algorithm learns a semantic feature field of the scene by distilling vision-language features from a pretrained 2D model.
Our method achieves panoptic segmentation performance similar to the state-of-the-art closed-set 3D systems on the HyperSim, ScanNet and Replica dataset.
arXiv Detail & Related papers (2023-09-11T13:41:27Z) - Lowis3D: Language-Driven Open-World Instance-Level 3D Scene
Understanding [57.47315482494805]
Open-world instance-level scene understanding aims to locate and recognize unseen object categories that are not present in the annotated dataset.
This task is challenging because the model needs to both localize novel 3D objects and infer their semantic categories.
We propose to harness pre-trained vision-language (VL) foundation models that encode extensive knowledge from image-text pairs to generate captions for 3D scenes.
arXiv Detail & Related papers (2023-08-01T07:50:14Z) - Weakly Supervised 3D Open-vocabulary Segmentation [104.07740741126119]
We tackle the challenges in 3D open-vocabulary segmentation by exploiting pre-trained foundation models CLIP and DINO in a weakly supervised manner.
We distill the open-vocabulary multimodal knowledge and object reasoning capability of CLIP and DINO into a neural radiance field (NeRF)
A notable aspect of our approach is that it does not require any manual segmentation annotations for either the foundation models or the distillation process.
arXiv Detail & Related papers (2023-05-23T14:16:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.