Blending Concepts with Text-to-Image Diffusion Models
- URL: http://arxiv.org/abs/2506.23630v1
- Date: Mon, 30 Jun 2025 08:53:30 GMT
- Title: Blending Concepts with Text-to-Image Diffusion Models
- Authors: Lorenzo Olearo, Giorgio Longari, Alessandro Raganato, Rafael PeƱaloza, Simone Melzi,
- Abstract summary: Diffusion models have advanced text-to-image generation in recent years, translating abstract concepts into high-fidelity images with remarkable ease.<n>In this work, we examine whether they can also blend distinct concepts, ranging from concrete objects to intangible ideas, into coherent new visual entities under a zero-shot framework.<n>We show that modern diffusion models indeed exhibit creative blending capabilities without further training or fine-tuning.
- Score: 48.68800153838679
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have dramatically advanced text-to-image generation in recent years, translating abstract concepts into high-fidelity images with remarkable ease. In this work, we examine whether they can also blend distinct concepts, ranging from concrete objects to intangible ideas, into coherent new visual entities under a zero-shot framework. Specifically, concept blending merges the key attributes of multiple concepts (expressed as textual prompts) into a single, novel image that captures the essence of each concept. We investigate four blending methods, each exploiting different aspects of the diffusion pipeline (e.g., prompt scheduling, embedding interpolation, or layer-wise conditioning). Through systematic experimentation across diverse concept categories, such as merging concrete concepts, synthesizing compound words, transferring artistic styles, and blending architectural landmarks, we show that modern diffusion models indeed exhibit creative blending capabilities without further training or fine-tuning. Our extensive user study, involving 100 participants, reveals that no single approach dominates in all scenarios: each blending technique excels under certain conditions, with factors like prompt ordering, conceptual distance, and random seed affecting the outcome. These findings highlight the remarkable compositional potential of diffusion models while exposing their sensitivity to seemingly minor input variations.
Related papers
- OmniPrism: Learning Disentangled Visual Concept for Image Generation [57.21097864811521]
Creative visual concept generation often draws inspiration from specific concepts in a reference image to produce relevant outcomes.<n>We propose OmniPrism, a visual concept disentangling approach for creative image generation.<n>Our method learns disentangled concept representations guided by natural language and trains a diffusion model to incorporate these concepts.
arXiv Detail & Related papers (2024-12-16T18:59:52Z) - How to Blend Concepts in Diffusion Models [48.68800153838679]
Recent methods exploit multiple latent representations and their connection, making this research question even more entangled.
Our goal is to understand how operations in the latent space affect the underlying concepts.
Our conclusion is that concept blending through space manipulation is possible, although the best strategy depends on the context of the blend.
arXiv Detail & Related papers (2024-07-19T13:05:57Z) - FreeCompose: Generic Zero-Shot Image Composition with Diffusion Prior [50.0535198082903]
We offer a novel approach to image composition, which integrates multiple input images into a single, coherent image.
We showcase the potential of utilizing the powerful generative prior inherent in large-scale pre-trained diffusion models to accomplish generic image composition.
arXiv Detail & Related papers (2024-07-06T03:35:43Z) - Isolated Diffusion: Optimizing Multi-Concept Text-to-Image Generation Training-Freely with Isolated Diffusion Guidance [19.221431052643222]
This paper presents a general approach for text-to-image diffusion models to address the mutual interference between different subjects and their attachments in complex scenes.<n>We propose to bind each attachment to corresponding subjects separately with split text prompts.<n>We then isolate and resynthesize each subject individually with corresponding text prompts to avoid mutual interference.
arXiv Detail & Related papers (2024-03-25T17:16:27Z) - Multi-Concept T2I-Zero: Tweaking Only The Text Embeddings and Nothing
Else [75.6806649860538]
We consider a more ambitious goal: natural multi-concept generation using a pre-trained diffusion model.
We observe concept dominance and non-localized contribution that severely degrade multi-concept generation performance.
We design a minimal low-cost solution that overcomes the above issues by tweaking the text embeddings for more realistic multi-concept text-to-image generation.
arXiv Detail & Related papers (2023-10-11T12:05:44Z) - The Hidden Language of Diffusion Models [70.03691458189604]
We present Conceptor, a novel method to interpret the internal representation of a textual concept by a diffusion model.
We find surprising visual connections between concepts, that transcend their textual semantics.
We additionally discover concepts that rely on mixtures of exemplars, biases, renowned artistic styles, or a simultaneous fusion of multiple meanings.
arXiv Detail & Related papers (2023-06-01T17:57:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.