Towards Building Private LLMs: Exploring Multi-Node Expert Parallelism on Apple Silicon for Mixture-of-Experts Large Language Model
- URL: http://arxiv.org/abs/2506.23635v1
- Date: Mon, 30 Jun 2025 09:04:25 GMT
- Title: Towards Building Private LLMs: Exploring Multi-Node Expert Parallelism on Apple Silicon for Mixture-of-Experts Large Language Model
- Authors: Mu-Chi Chen, Po-Hsuan Huang, Xiangrui Ke, Chia-Heng Tu, Chun Jason Xue, Shih-Hao Hung,
- Abstract summary: Large Language Models (LLMs) have revolutionized Artificial Intelligence (AI) with advancements such as OpenAI's ChatGPT, Meta's Llama, and Databricks' DBRX.<n>This paper addresses the cost and scalability challenges encountered when constructing private LLM systems for personal or small group services.<n>A Mac Studio cluster with Apple's M2 Ultra chips is established as a cost-efficient solution to host and accelerate the pretrained DBRX model.
- Score: 5.395171082357636
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) have revolutionized Artificial Intelligence (AI) with significant advancements such as OpenAI's ChatGPT, Meta's Llama, and Databricks' DBRX. This paper addresses the cost and scalability challenges encountered when constructing private LLM systems for personal or small group services, as aimed by Apple Intelligence. A Mac Studio cluster with Apple's M2 Ultra chips is established as a cost-efficient solution to host and accelerate the pretrained DBRX model with the Mixture-of-Experts (MoE) architecture. Our performance analysis reveal that parallel execution of the model's experts across two to four machine nodes significantly reduces inference time. We find that computation time for the experts is comparable to the communication time for exchanging their outputs, emphasizing the importance of network latency over bandwidth. We also observe significant management overhead due to Apple software stack's memory management logic. Based on these findings, we develop optimization schemes to eliminate the memory management overhead. As a result, the Mac Studio cluster is 1.15 times more cost-efficient than the state-of-the-art AI supercomputer with NVIDIA H100 GPUs. In addition, we construct a performance model to estimate system performance under varying configurations, and the model provides valuable insights for designing private LLM systems.
Related papers
- Apple Intelligence Foundation Language Models: Tech Report 2025 [246.04717786298764]
We introduce two foundation language models that power Apple Intelligence features across Apple devices and services.<n>Both models are trained on large-scale multilingual and multimodal datasets sourced via responsible web crawling.<n>A new Swift-centric Foundation Models framework exposes guided generation, constrained tool calling, and LoRA adapter fine-tuning.
arXiv Detail & Related papers (2025-07-17T23:37:19Z) - Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation [129.45368843861917]
We introduce the Gated Memory Unit (GMU), a simple yet effective mechanism for efficient memory sharing across layers.<n>We apply it to create SambaY, a decoder-hybrid-decoder architecture that incorporates GMUs to share memory readout states from a Samba-based self-decoder.
arXiv Detail & Related papers (2025-07-09T07:27:00Z) - PLM: Efficient Peripheral Language Models Hardware-Co-Designed for Ubiquitous Computing [48.30406812516552]
We introduce the PLM, a Peripheral Language Model, developed through a co-design process that jointly optimize model architecture and edge system constraints.<n>PLM employs a Multi-head Latent Attention mechanism and employs the squared ReLU activation function to encourage sparsity, thereby reducing peak memory footprint.<n> evaluation results demonstrate that PLM outperforms existing small language models trained on publicly available data.
arXiv Detail & Related papers (2025-03-15T15:11:17Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
We propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models.
Our approach employs activation sparsity to extract experts.
Read-ME outperforms other popular open-source dense models of similar scales.
arXiv Detail & Related papers (2024-10-24T19:48:51Z) - Search for Efficient Large Language Models [52.98684997131108]
Large Language Models (LLMs) have long held sway in the realms of artificial intelligence research.
Weight pruning, quantization, and distillation have been embraced to compress LLMs, targeting memory reduction and inference acceleration.
Most model compression techniques concentrate on weight optimization, overlooking the exploration of optimal architectures.
arXiv Detail & Related papers (2024-09-25T21:32:12Z) - Demystifying AI Platform Design for Distributed Inference of Next-Generation LLM models [8.02264001053969]
Large language models (LLMs) have shown remarkable performance across a wide range of applications, often outperforming human experts.<n>With constant innovation in LLM serving optimizations and model architecture evolving at breakneck speed, the hardware requirements to meet Service Level Objectives (SLOs) remain an open research question.<n>We present an analytical tool, GenZ, to efficiently navigate the relationship between diverse LLM model architectures and AI platform design parameters.
arXiv Detail & Related papers (2024-06-03T18:00:50Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
Large language models (LLMs) have revolutionized Natural Language Processing (NLP), but their size creates computational bottlenecks.
We introduce a novel approach to create accurate, sparse foundational versions of performant LLMs.
We show a total speedup on CPUs for sparse-quantized LLaMA models of up to 8.6x.
arXiv Detail & Related papers (2024-05-06T16:03:32Z) - Distributed Inference and Fine-tuning of Large Language Models Over The
Internet [91.00270820533272]
Large language models (LLMs) are useful in many NLP tasks and become more capable with size.
These models require high-end hardware, making them inaccessible to most researchers.
We develop fault-tolerant inference algorithms and load-balancing protocols that automatically assign devices to maximize the total system throughput.
arXiv Detail & Related papers (2023-12-13T18:52:49Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
We envision a decentralized system unlocking the potential vast untapped consumer-level GPU.
This system faces critical challenges, including limited CPU and GPU memory, low network bandwidth, the variability of peer and device heterogeneity.
arXiv Detail & Related papers (2023-09-03T13:27:56Z) - An Experimental Evaluation of Machine Learning Training on a Real
Processing-in-Memory System [9.429605859159023]
Training machine learning (ML) algorithms is a computationally intensive process, which is frequently memory-bound.
Memory-centric computing systems, with processing-in-memory capabilities, can alleviate this data movement bottleneck.
We implement several representative classic ML algorithms on a real-world general-purpose PIM architecture.
arXiv Detail & Related papers (2022-07-16T09:39:53Z) - A Tensor Compiler for Unified Machine Learning Prediction Serving [8.362773007171118]
Machine Learning (ML) adoption in the enterprise requires simpler and more efficient software infrastructure.
Model scoring is a primary contributor to infrastructure complexity and cost as models are trained once but used many times.
We propose HUMMINGBIRD, a novel approach to model scoring that compiles featurization operators and traditional ML models into a small set of tensor operations.
arXiv Detail & Related papers (2020-10-09T21:02:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.