Robustness of Misinformation Classification Systems to Adversarial Examples Through BeamAttack
- URL: http://arxiv.org/abs/2506.23661v2
- Date: Thu, 03 Jul 2025 09:46:05 GMT
- Title: Robustness of Misinformation Classification Systems to Adversarial Examples Through BeamAttack
- Authors: Arnisa Fazla, Lucas Krauter, David Guzman Piedrahita, Andrianos Michail,
- Abstract summary: BeamAttack is an adversarial attack algorithm designed to evaluate the robustness of text classification systems.<n>Our extensions include support for word deletions and the option to skip substitutions.<n>Our approach achieves over a 99% attack success rate while preserving the semantic and lexical similarity of the original texts.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We extend BeamAttack, an adversarial attack algorithm designed to evaluate the robustness of text classification systems through word-level modifications guided by beam search. Our extensions include support for word deletions and the option to skip substitutions, enabling the discovery of minimal modifications that alter model predictions. We also integrate LIME to better prioritize word replacements. Evaluated across multiple datasets and victim models (BiLSTM, BERT, and adversarially trained RoBERTa) within the BODEGA framework, our approach achieves over a 99\% attack success rate while preserving the semantic and lexical similarity of the original texts. Through both quantitative and qualitative analysis, we highlight BeamAttack's effectiveness and its limitations. Our implementation is available at https://github.com/LucK1Y/BeamAttack
Related papers
- Attacking Misinformation Detection Using Adversarial Examples Generated by Language Models [0.0]
We investigate the challenge of generating adversarial examples to test the robustness of text classification algorithms.
We focus on simulation of content moderation by setting realistic limits on the number of queries an attacker is allowed to attempt.
arXiv Detail & Related papers (2024-10-28T11:46:30Z) - Text-CRS: A Generalized Certified Robustness Framework against Textual Adversarial Attacks [39.51297217854375]
We propose Text-CRS, a certified robustness framework for natural language processing (NLP) based on randomized smoothing.
We show that Text-CRS can address all four different word-level adversarial operations and achieve a significant accuracy improvement.
We also provide the first benchmark on certified accuracy and radius of four word-level operations, besides outperforming the state-of-the-art certification against synonym substitution attacks.
arXiv Detail & Related papers (2023-07-31T13:08:16Z) - Verifying the Robustness of Automatic Credibility Assessment [50.55687778699995]
We show that meaning-preserving changes in input text can mislead the models.
We also introduce BODEGA: a benchmark for testing both victim models and attack methods on misinformation detection tasks.
Our experimental results show that modern large language models are often more vulnerable to attacks than previous, smaller solutions.
arXiv Detail & Related papers (2023-03-14T16:11:47Z) - In and Out-of-Domain Text Adversarial Robustness via Label Smoothing [64.66809713499576]
We study the adversarial robustness provided by various label smoothing strategies in foundational models for diverse NLP tasks.
Our experiments show that label smoothing significantly improves adversarial robustness in pre-trained models like BERT, against various popular attacks.
We also analyze the relationship between prediction confidence and robustness, showing that label smoothing reduces over-confident errors on adversarial examples.
arXiv Detail & Related papers (2022-12-20T14:06:50Z) - Learning-based Hybrid Local Search for the Hard-label Textual Attack [53.92227690452377]
We consider a rarely investigated but more rigorous setting, namely hard-label attack, in which the attacker could only access the prediction label.
Based on this observation, we propose a novel hard-label attack, called Learning-based Hybrid Local Search (LHLS) algorithm.
Our LHLS significantly outperforms existing hard-label attacks regarding the attack performance as well as adversary quality.
arXiv Detail & Related papers (2022-01-20T14:16:07Z) - BERT is Robust! A Case Against Synonym-Based Adversarial Examples in
Text Classification [8.072745157605777]
We investigate four word substitution-based attacks on BERT.
We show that their success is mainly based on feeding poor data to the model.
An additional post-processing step reduces the success rates of state-of-the-art attacks below 5%.
arXiv Detail & Related papers (2021-09-15T16:15:16Z) - Semantic-Preserving Adversarial Text Attacks [85.32186121859321]
We propose a Bigram and Unigram based adaptive Semantic Preservation Optimization (BU-SPO) method to examine the vulnerability of deep models.
Our method achieves the highest attack success rates and semantics rates by changing the smallest number of words compared with existing methods.
arXiv Detail & Related papers (2021-08-23T09:05:18Z) - Towards Variable-Length Textual Adversarial Attacks [68.27995111870712]
It is non-trivial to conduct textual adversarial attacks on natural language processing tasks due to the discreteness of data.
In this paper, we propose variable-length textual adversarial attacks(VL-Attack)
Our method can achieve $33.18$ BLEU score on IWSLT14 German-English translation, achieving an improvement of $1.47$ over the baseline model.
arXiv Detail & Related papers (2021-04-16T14:37:27Z) - Generating Natural Language Attacks in a Hard Label Black Box Setting [3.52359746858894]
We study an important and challenging task of attacking natural language processing models in a hard label black box setting.
We propose a decision-based attack strategy that crafts high quality adversarial examples on text classification and entailment tasks.
arXiv Detail & Related papers (2020-12-29T22:01:38Z) - BERT-ATTACK: Adversarial Attack Against BERT Using BERT [77.82947768158132]
Adrial attacks for discrete data (such as texts) are more challenging than continuous data (such as images)
We propose textbfBERT-Attack, a high-quality and effective method to generate adversarial samples.
Our method outperforms state-of-the-art attack strategies in both success rate and perturb percentage.
arXiv Detail & Related papers (2020-04-21T13:30:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.