Performance of LLMs on Stochastic Modeling Operations Research Problems: From Theory to Practice
- URL: http://arxiv.org/abs/2506.23924v1
- Date: Mon, 30 Jun 2025 14:54:15 GMT
- Title: Performance of LLMs on Stochastic Modeling Operations Research Problems: From Theory to Practice
- Authors: Akshit Kumar, Tianyi Peng, Yuhang Wu, Assaf Zeevi,
- Abstract summary: Large language models (LLMs) have exhibited expert-level capabilities across various domains.<n>However, their abilities to solve problems in Operations Research (OR) remain underexplored.
- Score: 18.040849771712093
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have exhibited expert-level capabilities across various domains. However, their abilities to solve problems in Operations Research (OR) -- the analysis and optimization of mathematical models derived from real-world problems or their verbal descriptions -- remain underexplored. In this work, we take a first step toward evaluating LLMs' abilities to solve stochastic modeling problems, a core class of OR problems characterized by uncertainty and typically involving tools from probability, statistics, and stochastic processes. We manually procure a representative set of graduate-level homework and doctoral qualification-exam problems and test LLMs' abilities to solve them. We further leverage SimOpt, an open-source library of simulation-optimization problems and solvers, to investigate LLMs' abilities to make real-world decisions under uncertainty. Our results show that, though a nontrivial amount of work is still needed to reliably automate the stochastic modeling pipeline in reality, state-of-the-art LLMs demonstrate proficiency on par with human experts in both classroom and practical settings. These findings highlight the potential of building AI agents that assist OR researchers and amplify the real-world impact of OR through automation.
Related papers
- ModelingAgent: Bridging LLMs and Mathematical Modeling for Real-World Challenges [72.19809898215857]
We introduce ModelingBench, a novel benchmark featuring real-world-inspired, open-ended problems from math modeling competitions across diverse domains.<n>These tasks require translating natural language into formal mathematical formulations, applying appropriate tools, and producing structured, defensible reports.<n>We also present ModelingAgent, a multi-agent framework that coordinates tool use, supports structured, creative solutions, and generates well-grounded, creative solutions.
arXiv Detail & Related papers (2025-05-21T03:33:23Z) - MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering [57.156093929365255]
Gym-style framework for systematically reinforcement learning, evaluating, and improving autonomous large language model (LLM) agents.<n>MLE-Dojo covers diverse, open-ended MLE tasks carefully curated to reflect realistic engineering scenarios.<n>Its fully executable environment supports comprehensive agent training via both supervised fine-tuning and reinforcement learning.
arXiv Detail & Related papers (2025-05-12T17:35:43Z) - OR-LLM-Agent: Automating Modeling and Solving of Operations Research Optimization Problems with Reasoning LLM [15.260794368585692]
We propose OR-LLM-Agent, an AI agent framework built on reasoning LLMs for automated Operations Research problem solving.<n>We show that OR-LLM-Agent utilizing DeepSeek-R1 in its framework outperforms advanced methods, including GPT-o3, Gemini 2.5 Pro, DeepSeek-R1, and ORLM, by at least 7% in accuracy.
arXiv Detail & Related papers (2025-03-13T03:40:50Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Evaluating LLM Reasoning in the Operations Research Domain with ORQA [19.72699080797411]
We introduce and apply Operations Research Question Answering (ORQA), a new benchmark designed to assess the generalization capabilities of Large Language Models (LLMs)<n>The dataset features real-world optimization problems that demand multistep reasoning to construct their mathematical models.<n>Our evaluations of various open source LLMs, such as LLaMA 3.1, DeepSeek, and Mixtral, reveal their modest performance, highlighting a gap in their ability to generalize to specialized technical domains.
arXiv Detail & Related papers (2024-12-22T09:10:34Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - On the limits of agency in agent-based models [13.130587222524305]
Agent-based modeling offers powerful insights into complex systems, but its practical utility has been limited by computational constraints.
Recent advancements in large language models (LLMs) could enhance ABMs with adaptive agents, but their integration into large-scale simulations remains challenging.
We present LLM archetypes, a technique that balances behavioral complexity with computational efficiency, allowing for nuanced agent behavior in large-scale simulations.
arXiv Detail & Related papers (2024-09-14T04:17:24Z) - Interpreting and Improving Large Language Models in Arithmetic Calculation [72.19753146621429]
Large language models (LLMs) have demonstrated remarkable potential across numerous applications.
In this work, we delve into uncovering a specific mechanism by which LLMs execute calculations.
We investigate the potential benefits of selectively fine-tuning these essential heads/MLPs to boost the LLMs' computational performance.
arXiv Detail & Related papers (2024-09-03T07:01:46Z) - WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks [85.95607119635102]
Large language models (LLMs) can mimic human-like intelligence.<n>WorkArena++ is designed to evaluate the planning, problem-solving, logical/arithmetic reasoning, retrieval, and contextual understanding abilities of web agents.
arXiv Detail & Related papers (2024-07-07T07:15:49Z) - LLMs for Mathematical Modeling: Towards Bridging the Gap between Natural and Mathematical Languages [14.04286044600141]
Large Language Models (LLMs) have demonstrated strong performance across various natural language processing tasks.<n>But their proficiency in mathematical reasoning remains a key challenge.<n>We propose a process-oriented framework to evaluate LLMs' ability to construct mathematical models.
arXiv Detail & Related papers (2024-05-21T18:29:54Z) - Solution-oriented Agent-based Models Generation with Verifier-assisted
Iterative In-context Learning [10.67134969207797]
Agent-based models (ABMs) stand as an essential paradigm for proposing and validating hypothetical solutions or policies.
Large language models (LLMs) encapsulating cross-domain knowledge and programming proficiency could potentially alleviate the difficulty of this process.
We present SAGE, a general solution-oriented ABM generation framework designed for automatic modeling and generating solutions for targeted problems.
arXiv Detail & Related papers (2024-02-04T07:59:06Z) - Evaluating LLMs' Mathematical and Coding Competency through Ontology-guided Interventions [47.83142414018448]
We focus on two popular reasoning tasks: arithmetic reasoning and code generation.
We introduce (i) a general ontology of perturbations for math and coding questions, (ii) a semi-automatic method to apply these perturbations, and (iii) two datasets.
We show a significant performance drop across all the models against perturbed questions.
arXiv Detail & Related papers (2024-01-17T18:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.