A Scalable Approach for Safe and Robust Learning via Lipschitz-Constrained Networks
- URL: http://arxiv.org/abs/2506.23977v1
- Date: Mon, 30 Jun 2025 15:42:23 GMT
- Title: A Scalable Approach for Safe and Robust Learning via Lipschitz-Constrained Networks
- Authors: Zain ul Abdeen, Vassilis Kekatos, Ming Jin,
- Abstract summary: Lipschitz-constrained global training constraints for neural networks (NNs) are proposed.<n>We show that the proposed formulation of Lipschitz-constrained NNs can be significantly improved.
- Score: 2.8960888722909566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Certified robustness is a critical property for deploying neural networks (NN) in safety-critical applications. A principle approach to achieving such guarantees is to constrain the global Lipschitz constant of the network. However, accurate methods for Lipschitz-constrained training often suffer from non-convex formulations and poor scalability due to reliance on global semidefinite programs (SDPs). In this letter, we propose a convex training framework that enforces global Lipschitz constraints via semidefinite relaxation. By reparameterizing the NN using loop transformation, we derive a convex admissibility condition that enables tractable and certifiable training. While the resulting formulation guarantees robustness, its scalability is limited by the size of global SDP. To overcome this, we develop a randomized subspace linear matrix inequalities (RS-LMI) approach that decomposes the global constraints into sketched layerwise constraints projected onto low-dimensional subspaces, yielding a smooth and memory-efficient training objective. Empirical results on MNIST, CIFAR-10, and ImageNet demonstrate that the proposed framework achieves competitive accuracy with significantly improved Lipschitz bounds and runtime performance.
Related papers
- Robust Stochastically-Descending Unrolled Networks [85.6993263983062]
Deep unrolling is an emerging learning-to-optimize method that unrolls a truncated iterative algorithm in the layers of a trainable neural network.<n>We show that convergence guarantees and generalizability of the unrolled networks are still open theoretical problems.<n>We numerically assess unrolled architectures trained under the proposed constraints in two different applications.
arXiv Detail & Related papers (2023-12-25T18:51:23Z) - Achieving Constraints in Neural Networks: A Stochastic Augmented
Lagrangian Approach [49.1574468325115]
Regularizing Deep Neural Networks (DNNs) is essential for improving generalizability and preventing overfitting.
We propose a novel approach to DNN regularization by framing the training process as a constrained optimization problem.
We employ the Augmented Lagrangian (SAL) method to achieve a more flexible and efficient regularization mechanism.
arXiv Detail & Related papers (2023-10-25T13:55:35Z) - Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization [40.2635560771494]
We develop a robust training algorithm to increase the margin in the output (logit) space while regularizing the Lipschitz constant of the model along vulnerable directions.<n>The relative accuracy of the bounds prevents excessive regularization and allows for more direct manipulation of the decision boundary.<n> Experiments on the MNIST, CIFAR-10, and Tiny-ImageNet data sets verify that our proposed algorithm obtains competitively improved results compared to the state-of-the-art.
arXiv Detail & Related papers (2023-09-29T20:07:02Z) - Lipschitz Continuity Retained Binary Neural Network [52.17734681659175]
We introduce the Lipschitz continuity as the rigorous criteria to define the model robustness for BNN.
We then propose to retain the Lipschitz continuity as a regularization term to improve the model robustness.
Our experiments prove that our BNN-specific regularization method can effectively strengthen the robustness of BNN.
arXiv Detail & Related papers (2022-07-13T22:55:04Z) - Chordal Sparsity for Lipschitz Constant Estimation of Deep Neural
Networks [77.82638674792292]
Lipschitz constants of neural networks allow for guarantees of robustness in image classification, safety in controller design, and generalizability beyond the training data.
As calculating Lipschitz constants is NP-hard, techniques for estimating Lipschitz constants must navigate the trade-off between scalability and accuracy.
In this work, we significantly push the scalability frontier of a semidefinite programming technique known as LipSDP while achieving zero accuracy loss.
arXiv Detail & Related papers (2022-04-02T11:57:52Z) - Training Certifiably Robust Neural Networks with Efficient Local
Lipschitz Bounds [99.23098204458336]
Certified robustness is a desirable property for deep neural networks in safety-critical applications.
We show that our method consistently outperforms state-of-the-art methods on MNIST and TinyNet datasets.
arXiv Detail & Related papers (2021-11-02T06:44:10Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
Implicit neural networks show improved accuracy and significant reduction in memory consumption.
They can suffer from ill-posedness and convergence instability.
This paper provides a new framework to design well-posed and robust implicit neural networks.
arXiv Detail & Related papers (2021-06-06T18:05:02Z) - Training robust neural networks using Lipschitz bounds [0.0]
neural networks (NNs) are hardly used in safety-critical applications.
One measure of robustness to adversarial perturbations is the Lipschitz constant of the input-output map defined by an NN.
We propose a framework to train multi-layer NNs while at the same time encouraging robustness by keeping their Lipschitz constant small.
arXiv Detail & Related papers (2020-05-06T16:07:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.