A Survey on Vision-Language-Action Models for Autonomous Driving
- URL: http://arxiv.org/abs/2506.24044v1
- Date: Mon, 30 Jun 2025 16:50:02 GMT
- Title: A Survey on Vision-Language-Action Models for Autonomous Driving
- Authors: Sicong Jiang, Zilin Huang, Kangan Qian, Ziang Luo, Tianze Zhu, Yang Zhong, Yihong Tang, Menglin Kong, Yunlong Wang, Siwen Jiao, Hao Ye, Zihao Sheng, Xin Zhao, Tuopu Wen, Zheng Fu, Sikai Chen, Kun Jiang, Diange Yang, Seongjin Choi, Lijun Sun,
- Abstract summary: Vision-Language-Action (VLA) paradigms integrate visual perception, natural language understanding, and control within a single policy.<n>Researchers in autonomous driving are actively adapting these methods to the vehicle domain.<n>This survey offers the first comprehensive overview of VLA for Autonomous Driving.
- Score: 26.407082158880204
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The rapid progress of multimodal large language models (MLLM) has paved the way for Vision-Language-Action (VLA) paradigms, which integrate visual perception, natural language understanding, and control within a single policy. Researchers in autonomous driving are actively adapting these methods to the vehicle domain. Such models promise autonomous vehicles that can interpret high-level instructions, reason about complex traffic scenes, and make their own decisions. However, the literature remains fragmented and is rapidly expanding. This survey offers the first comprehensive overview of VLA for Autonomous Driving (VLA4AD). We (i) formalize the architectural building blocks shared across recent work, (ii) trace the evolution from early explainer to reasoning-centric VLA models, and (iii) compare over 20 representative models according to VLA's progress in the autonomous driving domain. We also consolidate existing datasets and benchmarks, highlighting protocols that jointly measure driving safety, accuracy, and explanation quality. Finally, we detail open challenges - robustness, real-time efficiency, and formal verification - and outline future directions of VLA4AD. This survey provides a concise yet complete reference for advancing interpretable socially aligned autonomous vehicles. Github repo is available at \href{https://github.com/JohnsonJiang1996/Awesome-VLA4AD}{SicongJiang/Awesome-VLA4AD}.
Related papers
- AutoVLA: A Vision-Language-Action Model for End-to-End Autonomous Driving with Adaptive Reasoning and Reinforcement Fine-Tuning [42.409352964719204]
Vision-Language-Action (VLA) models have shown promise for end-to-end autonomous driving.<n>Current VLA models struggle with physically infeasible action outputs, complex model structures, or unnecessarily long reasoning.<n>We propose AutoVLA, a novel VLA model that unifies reasoning and action generation within a single autoregressive generation model.
arXiv Detail & Related papers (2025-06-16T17:58:50Z) - CoT-VLA: Visual Chain-of-Thought Reasoning for Vision-Language-Action Models [89.44024245194315]
We introduce a method that incorporates explicit visual chain-of-thought (CoT) reasoning into vision-language-action models (VLAs)<n>We introduce CoT-VLA, a state-of-the-art 7B VLA that can understand and generate visual and action tokens.<n>Our experimental results demonstrate that CoT-VLA achieves strong performance, outperforming the state-of-the-art VLA model by 17% in real-world manipulation tasks and 6% in simulation benchmarks.
arXiv Detail & Related papers (2025-03-27T22:23:04Z) - SafeAuto: Knowledge-Enhanced Safe Autonomous Driving with Multimodal Foundation Models [63.71984266104757]
We propose SafeAuto, a framework that enhances MLLM-based autonomous driving by incorporating both unstructured and structured knowledge.<n>To explicitly integrate safety knowledge, we develop a reasoning component that translates traffic rules into first-order logic.<n>Our Multimodal Retrieval-Augmented Generation model leverages video, control signals, and environmental attributes to learn from past driving experiences.
arXiv Detail & Related papers (2025-02-28T21:53:47Z) - The Role of World Models in Shaping Autonomous Driving: A Comprehensive Survey [50.62538723793247]
Driving World Model (DWM) focuses on predicting scene evolution during the driving process.<n>DWM methods enable autonomous driving systems to better perceive, understand, and interact with dynamic driving environments.
arXiv Detail & Related papers (2025-02-14T18:43:15Z) - V2V-LLM: Vehicle-to-Vehicle Cooperative Autonomous Driving with Multi-Modal Large Language Models [31.537045261401666]
We propose a novel problem setting that integrates a Multi-Modal Large Language Model into cooperative autonomous driving.<n>We also propose our baseline method Vehicle-to-Vehicle Multi-Modal Large Language Model (V2V-LLM)<n> Experimental results show that our proposed V2V-LLM can be a promising unified model architecture for performing various tasks in cooperative autonomous driving.
arXiv Detail & Related papers (2025-02-14T08:05:41Z) - CoVLA: Comprehensive Vision-Language-Action Dataset for Autonomous Driving [1.727597257312416]
CoVLA (Comprehensive Vision-Language-Action) dataset comprises real-world driving videos spanning more than 80 hours.<n>This dataset establishes a framework for robust, interpretable, and data-driven autonomous driving systems.
arXiv Detail & Related papers (2024-08-19T09:53:49Z) - SimpleLLM4AD: An End-to-End Vision-Language Model with Graph Visual Question Answering for Autonomous Driving [15.551625571158056]
We propose an e2eAD method called SimpleLLM4AD.
In our method, the e2eAD task are divided into four stages, which are perception, prediction, planning, and behavior.
Our experiments demonstrate that SimpleLLM4AD achieves competitive performance in complex driving scenarios.
arXiv Detail & Related papers (2024-07-31T02:35:33Z) - A Survey on Vision-Language-Action Models for Embodied AI [71.16123093739932]
Embodied AI is widely recognized as a key element of artificial general intelligence.<n>A new category of multimodal models has emerged to address language-conditioned robotic tasks in embodied AI.<n>We present the first survey on vision-language-action models for embodied AI.
arXiv Detail & Related papers (2024-05-23T01:43:54Z) - Multi-Frame, Lightweight & Efficient Vision-Language Models for Question Answering in Autonomous Driving [0.0]
We develop an efficient, lightweight, multi-frame vision language model which performs Visual Question Answering for autonomous driving.
In comparison to previous approaches, EM-VLM4AD requires at least 10 times less memory and floating point operations.
arXiv Detail & Related papers (2024-03-28T21:18:33Z) - On the Road with GPT-4V(ision): Early Explorations of Visual-Language
Model on Autonomous Driving [37.617793990547625]
This report provides an exhaustive evaluation of the latest state-of-the-art VLM, GPT-4V.
We explore the model's abilities to understand and reason about driving scenes, make decisions, and ultimately act in the capacity of a driver.
Our findings reveal that GPT-4V demonstrates superior performance in scene understanding and causal reasoning compared to existing autonomous systems.
arXiv Detail & Related papers (2023-11-09T12:58:37Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
Large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers.
In this paper, we systematically review a research line about textitLarge Language Models for Autonomous Driving (LLM4AD).
arXiv Detail & Related papers (2023-11-02T07:23:33Z) - DriveGPT4: Interpretable End-to-end Autonomous Driving via Large Language Model [84.29836263441136]
This study introduces DriveGPT4, a novel interpretable end-to-end autonomous driving system based on multimodal large language models (MLLMs)
DriveGPT4 facilitates the interpretation of vehicle actions, offers pertinent reasoning, and effectively addresses a diverse range of questions posed by users.
arXiv Detail & Related papers (2023-10-02T17:59:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.