AdaDeDup: Adaptive Hybrid Data Pruning for Efficient Large-Scale Object Detection Training
- URL: http://arxiv.org/abs/2507.00049v1
- Date: Tue, 24 Jun 2025 22:35:51 GMT
- Title: AdaDeDup: Adaptive Hybrid Data Pruning for Efficient Large-Scale Object Detection Training
- Authors: Feiyang Kang, Nadine Chang, Maying Shen, Marc T. Law, Rafid Mahmood, Ruoxi Jia, Jose M. Alvarez,
- Abstract summary: We introduce Adaptive De-Duplication (AdaDeDup), a novel framework that integrates density-based pruning with model-informed feedback in a cluster-adaptive manner.<n>It significantly outperforms prominent baselines, substantially reduces performance degradation, and achieves near-original model performance while pruning 20% of data.
- Score: 33.01500681857408
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The computational burden and inherent redundancy of large-scale datasets challenge the training of contemporary machine learning models. Data pruning offers a solution by selecting smaller, informative subsets, yet existing methods struggle: density-based approaches can be task-agnostic, while model-based techniques may introduce redundancy or prove computationally prohibitive. We introduce Adaptive De-Duplication (AdaDeDup), a novel hybrid framework that synergistically integrates density-based pruning with model-informed feedback in a cluster-adaptive manner. AdaDeDup first partitions data and applies an initial density-based pruning. It then employs a proxy model to evaluate the impact of this initial pruning within each cluster by comparing losses on kept versus pruned samples. This task-aware signal adaptively adjusts cluster-specific pruning thresholds, enabling more aggressive pruning in redundant clusters while preserving critical data in informative ones. Extensive experiments on large-scale object detection benchmarks (Waymo, COCO, nuScenes) using standard models (BEVFormer, Faster R-CNN) demonstrate AdaDeDup's advantages. It significantly outperforms prominent baselines, substantially reduces performance degradation (e.g., over 54% versus random sampling on Waymo), and achieves near-original model performance while pruning 20% of data, highlighting its efficacy in enhancing data efficiency for large-scale model training. Code is open-sourced.
Related papers
- SPaRFT: Self-Paced Reinforcement Fine-Tuning for Large Language Models [51.74498855100541]
Large language models (LLMs) have shown strong reasoning capabilities when fine-tuned with reinforcement learning (RL)<n>We propose textbfSPaRFT, a self-paced learning framework that enables efficient learning based on the capability of the model being trained.
arXiv Detail & Related papers (2025-08-07T03:50:48Z) - LEAD: Iterative Data Selection for Efficient LLM Instruction Tuning [22.242445543184264]
We propose LEAD, an efficient iterative data selection framework that accurately estimates sample utility entirely within the standard training loop.<n>Experiments show that LEAD significantly outperforms state-of-the-art methods, improving average model performance by 6.1%-10.8% while using only 2.5% of the training data and reducing overall training time by 5-10x.
arXiv Detail & Related papers (2025-05-12T10:57:51Z) - Data Pruning in Generative Diffusion Models [2.0111637969968]
Generative models aim to estimate the underlying distribution of the data, so presumably they should benefit from larger datasets.<n>We show that eliminating redundant or noisy data in large datasets is beneficial particularly when done strategically.
arXiv Detail & Related papers (2024-11-19T14:13:25Z) - A Bayesian Approach to Data Point Selection [24.98069363998565]
Data point selection (DPS) is becoming a critical topic in deep learning.
Existing approaches to DPS are predominantly based on a bi-level optimisation (BLO) formulation.
We propose a novel Bayesian approach to DPS.
arXiv Detail & Related papers (2024-11-06T09:04:13Z) - DRoP: Distributionally Robust Data Pruning [11.930434318557156]
We conduct the first systematic study of the impact of data pruning on classification bias of trained models.<n>We propose DRoP, a distributionally robust approach to pruning and empirically demonstrate its performance on standard computer vision benchmarks.
arXiv Detail & Related papers (2024-04-08T14:55:35Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - End-to-end Learnable Clustering for Intent Learning in Recommendation [54.157784572994316]
We propose a novel intent learning method termed underlineELCRec.
It unifies behavior representation learning into an underlineEnd-to-end underlineLearnable underlineClustering framework.
We deploy this method on the industrial recommendation system with 130 million page views and achieve promising results.
arXiv Detail & Related papers (2024-01-11T15:22:55Z) - Not All Data Matters: An End-to-End Adaptive Dataset Pruning Framework
for Enhancing Model Performance and Efficiency [9.460023981858319]
We propose an end-to-end Adaptive DAtaset PRUNing framework called AdaPruner.
AdaPruner iteratively prunes redundant samples to an expected pruning ratio.
It can still significantly enhance model performance even after pruning up to 10-30% of the training data.
arXiv Detail & Related papers (2023-12-09T16:01:21Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - ClusterQ: Semantic Feature Distribution Alignment for Data-Free
Quantization [111.12063632743013]
We propose a new and effective data-free quantization method termed ClusterQ.
To obtain high inter-class separability of semantic features, we cluster and align the feature distribution statistics.
We also incorporate the intra-class variance to solve class-wise mode collapse.
arXiv Detail & Related papers (2022-04-30T06:58:56Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
Variational autoencoders (VAE) are a powerful and widely-used class of generative models.
We introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs.
Our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.
arXiv Detail & Related papers (2021-01-06T17:36:26Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.