What Makes Local Updates Effective: The Role of Data Heterogeneity and Smoothness
- URL: http://arxiv.org/abs/2507.00195v1
- Date: Mon, 30 Jun 2025 19:06:02 GMT
- Title: What Makes Local Updates Effective: The Role of Data Heterogeneity and Smoothness
- Authors: Kumar Kshitij Patel,
- Abstract summary: The thesis contributes to a self-contained guide for analyzing Local SGD in heterogeneous environments.<n>The thesis also extends to online learning, providing fundamental bounds under both first-order and bandit feedback.
- Score: 5.357435119431715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This thesis contributes to the theoretical understanding of local update algorithms, especially Local SGD, in distributed and federated optimization under realistic models of data heterogeneity. A central focus is on the bounded second-order heterogeneity assumption, which is shown to be both necessary and sufficient for local updates to outperform centralized or mini-batch methods in convex and non-convex settings. The thesis establishes tight upper and lower bounds in several regimes for various local update algorithms and characterizes the min-max complexity of multiple problem classes. At its core is a fine-grained consensus-error-based analysis framework that yields sharper finite-time convergence bounds under third-order smoothness and relaxed heterogeneity assumptions. The thesis also extends to online federated learning, providing fundamental regret bounds under both first-order and bandit feedback. Together, these results clarify when and why local updates offer provable advantages, and the thesis serves as a self-contained guide for analyzing Local SGD in heterogeneous environments.
Related papers
- Convergence of Distributed Adaptive Optimization with Local Updates [3.895864050325129]
We study distributed adaptive algorithms with local updates (intermittent communication)<n>For the first time, we prove that em Local SGD em with momentum (em Local em SGDM) and em Local em Adam can outperform their minibatch counterparts in convex and weakly convex settings.
arXiv Detail & Related papers (2024-09-20T01:45:10Z) - The Limits and Potentials of Local SGD for Distributed Heterogeneous Learning with Intermittent Communication [37.210933391984014]
Local SGD is a popular optimization method in distributed learning, often outperforming other algorithms in practice.
We provide new lower bounds for local SGD under existing first-order data heterogeneity assumptions.
We also show the min-max optimality of accelerated mini-batch SGD for several problem classes.
arXiv Detail & Related papers (2024-05-19T20:20:03Z) - Can Decentralized Stochastic Minimax Optimization Algorithms Converge
Linearly for Finite-Sum Nonconvex-Nonconcave Problems? [56.62372517641597]
Decentralized minimax optimization has been actively studied in the past few years due to its application in a wide range machine learning.
This paper develops two novel decentralized minimax optimization algorithms for the non-strongly-nonconcave problem.
arXiv Detail & Related papers (2023-04-24T02:19:39Z) - Federated Minimax Optimization: Improved Convergence Analyses and
Algorithms [32.062312674333775]
We consider non minimax optimization, is gaining prominence many modern machine learning applications such as GANs.
We provide a novel and tighter analysis algorithm, improves convergence communication guarantees in the existing literature.
arXiv Detail & Related papers (2022-03-09T16:21:31Z) - Escaping Saddle Points with Bias-Variance Reduced Local Perturbed SGD
for Communication Efficient Nonconvex Distributed Learning [58.79085525115987]
Local methods are one of the promising approaches to reduce communication time.
We show that the communication complexity is better than non-local methods when the local datasets is smaller than the smoothness local loss.
arXiv Detail & Related papers (2022-02-12T15:12:17Z) - Decentralized Local Stochastic Extra-Gradient for Variational
Inequalities [125.62877849447729]
We consider distributed variational inequalities (VIs) on domains with the problem data that is heterogeneous (non-IID) and distributed across many devices.
We make a very general assumption on the computational network that covers the settings of fully decentralized calculations.
We theoretically analyze its convergence rate in the strongly-monotone, monotone, and non-monotone settings.
arXiv Detail & Related papers (2021-06-15T17:45:51Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
Simple algorithms have been shown to lead to good empirical results in many contexts.
Several works have pursued rigorous analytical justification for studying non optimization problems.
A key insight in these analyses is that perturbations play a critical role in allowing local descent algorithms.
arXiv Detail & Related papers (2020-03-31T16:54:22Z) - A Unified Theory of Decentralized SGD with Changing Topology and Local
Updates [70.9701218475002]
We introduce a unified convergence analysis of decentralized communication methods.
We derive universal convergence rates for several applications.
Our proofs rely on weak assumptions.
arXiv Detail & Related papers (2020-03-23T17:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.