MuteSwap: Visual-informed Silent Video Identity Conversion
- URL: http://arxiv.org/abs/2507.00498v3
- Date: Sun, 03 Aug 2025 15:08:39 GMT
- Title: MuteSwap: Visual-informed Silent Video Identity Conversion
- Authors: Yifan Liu, Yu Fang, Zhouhan Lin,
- Abstract summary: We introduce Silent Face-based Voice Conversion (SFVC)<n>SFVC generates intelligible speech and converting identity using only visual cues.<n>MuteSwap is a novel framework that employs contrastive learning to align cross-modality identities.
- Score: 18.395223784732806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional voice conversion modifies voice characteristics from a source speaker to a target speaker, relying on audio input from both sides. However, this process becomes infeasible when clean audio is unavailable, such as in silent videos or noisy environments. In this work, we focus on the task of Silent Face-based Voice Conversion (SFVC), which does voice conversion entirely from visual inputs. i.e., given images of a target speaker and a silent video of a source speaker containing lip motion, SFVC generates speech aligning the identity of the target speaker while preserving the speech content in the source silent video. As this task requires generating intelligible speech and converting identity using only visual cues, it is particularly challenging. To address this, we introduce MuteSwap, a novel framework that employs contrastive learning to align cross-modality identities and minimize mutual information to separate shared visual features. Experimental results show that MuteSwap achieves impressive performance in both speech synthesis and identity conversion, especially under noisy conditions where methods dependent on audio input fail to produce intelligible results, demonstrating both the effectiveness of our training approach and the feasibility of SFVC.
Related papers
- VoicePrompter: Robust Zero-Shot Voice Conversion with Voice Prompt and Conditional Flow Matching [0.7366405857677227]
VoicePrompter is a robust zero-shot voice conversion model that leverages in-context learning with voice prompts.<n>We show that VoicePrompter outperforms existing zero-shot VC systems in terms of speaker similarity, speech intelligibility, and audio quality.
arXiv Detail & Related papers (2025-01-29T12:34:58Z) - Seeing Your Speech Style: A Novel Zero-Shot Identity-Disentanglement Face-based Voice Conversion [5.483488375189695]
Face-based Voice Conversion (FVC) is a novel task that leverages facial images to generate the target speaker's voice style.
Previous work has two shortcomings: (1) suffering from obtaining facial embeddings that are well-aligned with the speaker's voice identity information, and (2) inadequacy in decoupling content and speaker identity information from the audio input.
We present a novel FVC method, Identity-Disentanglement Face-based Voice Conversion (ID-FaceVC), which overcomes the above two limitations.
arXiv Detail & Related papers (2024-09-01T11:51:18Z) - Cooperative Dual Attention for Audio-Visual Speech Enhancement with
Facial Cues [80.53407593586411]
We focus on leveraging facial cues beyond the lip region for robust Audio-Visual Speech Enhancement (AVSE)
We propose a Dual Attention Cooperative Framework, DualAVSE, to ignore speech-unrelated information, capture speech-related information with facial cues, and dynamically integrate it with the audio signal for AVSE.
arXiv Detail & Related papers (2023-11-24T04:30:31Z) - Speech inpainting: Context-based speech synthesis guided by video [29.233167442719676]
This paper focuses on the problem of audio-visual speech inpainting, which is the task of synthesizing the speech in a corrupted audio segment.
We present an audio-visual transformer-based deep learning model that leverages visual cues that provide information about the content of the corrupted audio.
We also show how visual features extracted with AV-HuBERT, a large audio-visual transformer for speech recognition, are suitable for synthesizing speech.
arXiv Detail & Related papers (2023-06-01T09:40:47Z) - Language-Guided Audio-Visual Source Separation via Trimodal Consistency [64.0580750128049]
A key challenge in this task is learning to associate the linguistic description of a sound-emitting object to its visual features and the corresponding components of the audio waveform.
We adapt off-the-shelf vision-language foundation models to provide pseudo-target supervision via two novel loss functions.
We demonstrate the effectiveness of our self-supervised approach on three audio-visual separation datasets.
arXiv Detail & Related papers (2023-03-28T22:45:40Z) - Audio-Visual Speech Codecs: Rethinking Audio-Visual Speech Enhancement
by Re-Synthesis [67.73554826428762]
We propose a novel audio-visual speech enhancement framework for high-fidelity telecommunications in AR/VR.
Our approach leverages audio-visual speech cues to generate the codes of a neural speech, enabling efficient synthesis of clean, realistic speech from noisy signals.
arXiv Detail & Related papers (2022-03-31T17:57:10Z) - Robust Disentangled Variational Speech Representation Learning for
Zero-shot Voice Conversion [34.139871476234205]
We investigate zero-shot voice conversion from a novel perspective of self-supervised disentangled speech representation learning.
A zero-shot voice conversion is performed by feeding an arbitrary speaker embedding and content embeddings to a sequential variational autoencoder (VAE) decoder.
On TIMIT and VCTK datasets, we achieve state-of-the-art performance on both objective evaluation, i.e., speaker verification (SV) on speaker embedding and content embedding, and subjective evaluation, i.e. voice naturalness and similarity, and remains to be robust even with noisy source/target utterances.
arXiv Detail & Related papers (2022-03-30T23:03:19Z) - VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised
Speech Representation Disentanglement for One-shot Voice Conversion [54.29557210925752]
One-shot voice conversion can be effectively achieved by speech representation disentanglement.
We employ vector quantization (VQ) for content encoding and introduce mutual information (MI) as the correlation metric during training.
Experimental results reflect the superiority of the proposed method in learning effective disentangled speech representations.
arXiv Detail & Related papers (2021-06-18T13:50:38Z) - Voicy: Zero-Shot Non-Parallel Voice Conversion in Noisy Reverberant
Environments [76.98764900754111]
Voice Conversion (VC) is a technique that aims to transform the non-linguistic information of a source utterance to change the perceived identity of the speaker.
We propose Voicy, a new VC framework particularly tailored for noisy speech.
Our method, which is inspired by the de-noising auto-encoders framework, is comprised of four encoders (speaker, content, phonetic and acoustic-ASR) and one decoder.
arXiv Detail & Related papers (2021-06-16T15:47:06Z) - VisualVoice: Audio-Visual Speech Separation with Cross-Modal Consistency [111.55430893354769]
Given a video, the goal is to extract the speech associated with a face in spite of simultaneous background sounds and/or other human speakers.
Our approach jointly learns audio-visual speech separation and cross-modal speaker embeddings from unlabeled video.
It yields state-of-the-art results on five benchmark datasets for audio-visual speech separation and enhancement.
arXiv Detail & Related papers (2021-01-08T18:25:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.