Transferable Modeling Strategies for Low-Resource LLM Tasks: A Prompt and Alignment-Based Approach
- URL: http://arxiv.org/abs/2507.00601v2
- Date: Wed, 02 Jul 2025 06:39:55 GMT
- Title: Transferable Modeling Strategies for Low-Resource LLM Tasks: A Prompt and Alignment-Based Approach
- Authors: Shuangquan Lyu, Yingnan Deng, Guiran Liu, Zhen Qi, Ruotong Wang,
- Abstract summary: This paper addresses the limited transfer and adaptation capabilities of large language models in low-resource language scenarios.<n>It proposes a unified framework that combines a knowledge transfer module with parameter-efficient fine-tuning strategies.<n>It enhances task-specific adaptability while preserving the general capabilities of large language models.
- Score: 1.3286097954612326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the limited transfer and adaptation capabilities of large language models in low-resource language scenarios. It proposes a unified framework that combines a knowledge transfer module with parameter-efficient fine-tuning strategies. The method introduces knowledge alignment loss and soft prompt tuning to guide the model in effectively absorbing the structural features of target languages or tasks under minimal annotation. This enhances both generalization performance and training stability. The framework includes lightweight adaptation modules to reduce computational costs. During training, it integrates freezing strategies and prompt injection to preserve the model's original knowledge while enabling quick adaptation to new tasks. The study also conducts stability analysis experiments and synthetic pseudo-data transfer experiments to systematically evaluate the method's applicability and robustness across different low-resource tasks. Experimental results show that compared with existing multilingual pre-trained models and mainstream transfer methods, the proposed approach achieves higher performance and stability on cross-lingual tasks such as MLQA, XQuAD, and PAWS-X. It demonstrates particularly strong advantages under extremely data-scarce conditions. The proposed method offers strong generality and scalability. It enhances task-specific adaptability while preserving the general capabilities of large language models. This makes it well-suited for complex semantic modeling and multilingual processing tasks.
Related papers
- Generalizing Large Language Model Usability Across Resource-Constrained [0.43512163406552007]
dissertation presents a systematic study toward generalizing Large Language Models under real-world constraints.<n>First, it introduces a robust text-centric alignment framework that enables LLMs to seamlessly integrate diverse modalities.<n>Beyond multimodal setting, the dissertation investigates inference-time optimization strategies for LLMs.
arXiv Detail & Related papers (2025-05-13T01:00:12Z) - Large Language Model as Meta-Surrogate for Data-Driven Many-Task Optimization: A Proof-of-Principle Study [11.452011929848844]
This study proposes a novel meta-surrogate framework to assist many-task optimization.<n>We formulate a unified framework for many-task fitness prediction, by defining a universal model with metadata to fit a group of problems.<n>Our framework supports dual-level knowledge transfer -- at both the surrogate and individual levels -- enhancing optimization efficiency and robustness.
arXiv Detail & Related papers (2025-03-11T11:13:11Z) - Large Language Models as Attribution Regularizers for Efficient Model Training [0.0]
Large Language Models (LLMs) have demonstrated remarkable performance across diverse domains.<n>We introduce a novel yet straightforward method for incorporating LLM-generated global task feature attributions into the training process of smaller networks.<n>Our approach yields superior performance in few-shot learning scenarios.
arXiv Detail & Related papers (2025-02-27T16:55:18Z) - Learning Task Representations from In-Context Learning [73.72066284711462]
Large language models (LLMs) have demonstrated remarkable proficiency in in-context learning.<n>We introduce an automated formulation for encoding task information in ICL prompts as a function of attention heads.<n>We show that our method's effectiveness stems from aligning the distribution of the last hidden state with that of an optimally performing in-context-learned model.
arXiv Detail & Related papers (2025-02-08T00:16:44Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Unlocking the Potential of Model Merging for Low-Resource Languages [66.7716891808697]
Adapting large language models to new languages typically involves continual pre-training (CT) followed by supervised fine-tuning (SFT)
We propose model merging as an alternative for low-resource languages, combining models with distinct capabilities into a single model without additional training.
Experiments based on Llama-2-7B demonstrate that model merging effectively endows LLMs for low-resource languages with task-solving abilities, outperforming CT-then-SFT in scenarios with extremely scarce data.
arXiv Detail & Related papers (2024-07-04T15:14:17Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks.
However, the massive size of these models poses huge challenges for their deployment in real-world applications.
We introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT) which effectively transfers the knowledge of LLMs to extremely small-scale models.
arXiv Detail & Related papers (2023-10-24T07:58:20Z) - On the Usability of Transformers-based models for a French
Question-Answering task [2.44288434255221]
This paper focuses on the usability of Transformer-based language models in small-scale learning problems.
We introduce a new compact model for French FrALBERT which proves to be competitive in low-resource settings.
arXiv Detail & Related papers (2022-07-19T09:46:15Z) - Improving Meta-learning for Low-resource Text Classification and
Generation via Memory Imitation [87.98063273826702]
We propose a memory imitation meta-learning (MemIML) method that enhances the model's reliance on support sets for task adaptation.
A theoretical analysis is provided to prove the effectiveness of our method.
arXiv Detail & Related papers (2022-03-22T12:41:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.