EARN: Efficient Inference Acceleration for LLM-based Generative Recommendation by Register Tokens
- URL: http://arxiv.org/abs/2507.00715v1
- Date: Tue, 01 Jul 2025 12:42:06 GMT
- Title: EARN: Efficient Inference Acceleration for LLM-based Generative Recommendation by Register Tokens
- Authors: Chaoqun Yang, Xinyu Lin, Wenjie Wang, Yongqi Li, Teng Sun, Xianjing Han, Tat-Seng Chua,
- Abstract summary: Large Language Model-based generative recommendation (LLMRec) has achieved notable success, but it suffers from high inference latency.<n>We propose EARN, an efficient inference framework that leverages the early layers to compress information into register tokens placed at the input sequence boundaries.
- Score: 47.60523011706102
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Model-based generative recommendation (LLMRec) has achieved notable success, but it suffers from high inference latency due to massive computational overhead and memory pressure of KV Cache. Existing KV Cache reduction methods face critical limitations: cache compression offers marginal acceleration given recommendation tasks' short decoding steps, while prompt compression risks discarding vital interaction history. Through systematic analysis of attention patterns in LLMRec, we uncover two pivotal insights: 1) layer-wise attention sparsity inversion where early layers retain dense informative patterns while later layers exhibit high redundancy, and 2) dual attention sinks phenomenon where attention scores concentrate on both head and tail tokens of input sequences. Motivated by these insights, we propose EARN, an efficient inference framework that leverages the early layers to compress information into register tokens placed at the input sequence boundaries, then focuses solely on these tokens in the subsequent layers. Extensive experiments on three datasets, two LLMRec methods and two LLM architectures demonstrate EARN's superiority, achieving up to 3.79x speedup and 80.8% KV Cache reduction with better accuracy than the general finetuning approach. Our work bridges the efficiency-effectiveness gap in LLMRec, offering practical deployment advantages for industrial scenarios.
Related papers
- Sparse-dLLM: Accelerating Diffusion LLMs with Dynamic Cache Eviction [58.044803442346115]
Diffusion Large Language Models (dLLMs) enable breakthroughs in reasoning and parallel decoding but suffer from prohibitive computational complexity and memory overhead during inference.<n>We propose Sparse-dLLM, the first training-free framework integrating dynamic cache eviction with sparse attention via delayed bidirectional sparse caching.
arXiv Detail & Related papers (2025-08-04T16:14:03Z) - SmallKV: Small Model Assisted Compensation of KV Cache Compression for Efficient LLM Inference [71.20542521694524]
SmallKV is a small model assisted compensation method for KV cache compression.<n>We show that SmallKV achieves 1.75 - 2.56 times higher throughput than baseline methods.
arXiv Detail & Related papers (2025-08-03T09:15:36Z) - Optimizing LLM Inference: Fluid-Guided Online Scheduling with Memory Constraints [14.341123057506827]
Large Language Models (LLMs) are indispensable in today's applications, but their inference procedure demands significant computational resources.<n>This paper formulates LLM inference optimization as a multi-stage online scheduling problem.<n>We develop a fluid dynamics approximation to provide a tractable benchmark that guides algorithm design.
arXiv Detail & Related papers (2025-04-15T16:00:21Z) - RedundancyLens: Revealing and Exploiting Visual Token Processing Redundancy for Efficient Decoder-Only MLLMs [38.34856927170692]
We propose a training-free framework for analyzing trained Multimodal Large Language Model (MLLM)<n>It consists of Probe-Activated Dynamic FFN and Hollow Attention, which enable adjustable reductions in computations for visual tokens.<n>Experiments demonstrate substantial, structured, and clustered redundancy unique to decoder-only MLLMs.
arXiv Detail & Related papers (2025-01-31T11:09:16Z) - PrefixKV: Adaptive Prefix KV Cache is What Vision Instruction-Following Models Need for Efficient Generation [65.36715026409873]
Key-value (KV) cache, necessitated by the lengthy input and output sequences, notably contributes to the high inference cost.<n>We present PrefixKV, which reframes the challenge of determining KV cache sizes for all layers into the task of searching for the optimal global prefix configuration.<n>Our method achieves the state-of-the-art performance compared with others.
arXiv Detail & Related papers (2024-12-04T15:48:59Z) - ZipVL: Efficient Large Vision-Language Models with Dynamic Token Sparsification [29.163757099307553]
The efficiency of large vision-language models (LVLMs) is constrained by the computational bottleneck of the attention mechanism during the prefill phase.<n>We present ZipVL, an efficient inference framework designed for LVLMs through a dynamic ratio allocation strategy of important tokens.
arXiv Detail & Related papers (2024-10-11T07:24:21Z) - Efficient Inference for Large Language Model-based Generative Recommendation [78.38878421030522]
Large Language Model (LLM)-based generative recommendation has achieved notable success, yet its practical deployment is costly.<n>Applying Speculative Decoding (SD) to generative recommendation presents unique challenges due to the requirement of generating top-K items.<n>We propose an alignment framework named AtSpeed, which presents the AtSpeed-S optimization objective for top-K alignment under the strict top-K verification.
arXiv Detail & Related papers (2024-10-07T16:23:36Z) - TidalDecode: Fast and Accurate LLM Decoding with Position Persistent Sparse Attention [7.4088392854630625]
Large language models (LLMs) have driven significant advancements across diverse NLP tasks.
This paper introduces TidalDecode, a system for fast and accurate LLM decoding through position persistent sparse attention.
arXiv Detail & Related papers (2024-10-07T14:30:27Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
Large Language Models (LLMs) have revolutionized the field of natural language processing, achieving unprecedented performance across a variety of applications.<n>This paper focuses on the long-context scenario, addressing the inefficiencies in KV cache memory consumption during inference.<n>We propose ThinK, a novel query-dependent KV cache pruning method designed to minimize attention weight loss while selectively pruning the least significant channels.
arXiv Detail & Related papers (2024-07-30T17:59:08Z) - D2O: Dynamic Discriminative Operations for Efficient Long-Context Inference of Large Language Models [28.244034916473804]
Generative inference in Large Language Models (LLMs) is impeded by the growing memory demands of Key-Value (KV) cache.<n>Traditional KV cache eviction strategies discard less critical KV pairs based on attention scores, leading to issues such as context loss or hallucinations.<n>We introduce Dynamic Discriminative Operations (D2O), a KV cache compression method that optimize KV cache size dynamically and discriminatively at two levels without fine-tuning.
arXiv Detail & Related papers (2024-06-18T20:01:51Z) - FFN-SkipLLM: A Hidden Gem for Autoregressive Decoding with Adaptive Feed Forward Skipping [49.66872823080736]
Autoregressive Large Language Models (e.g., LLaMa, GPTs) are omnipresent achieving remarkable success in language understanding and generation.
To mitigate overload incurred during generation, several early-exit and layer-dropping strategies have been proposed.
We propose FFN-SkipLLM, which is an input-adaptive feed-forward skipping strategy.
arXiv Detail & Related papers (2024-04-05T02:35:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.