Towards Open-World Human Action Segmentation Using Graph Convolutional Networks
- URL: http://arxiv.org/abs/2507.00756v1
- Date: Tue, 01 Jul 2025 14:00:39 GMT
- Title: Towards Open-World Human Action Segmentation Using Graph Convolutional Networks
- Authors: Hao Xing, Kai Zhe Boey, Gordon Cheng,
- Abstract summary: Most existing learning-based methods excel in closed-world action segmentation.<n>We propose a structured framework for detecting and segmenting unseen actions.<n>We evaluate our framework on two challenging human-object recognition datasets.
- Score: 6.167678490008973
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human-object interaction segmentation is a fundamental task of daily activity understanding, which plays a crucial role in applications such as assistive robotics, healthcare, and autonomous systems. Most existing learning-based methods excel in closed-world action segmentation, they struggle to generalize to open-world scenarios where novel actions emerge. Collecting exhaustive action categories for training is impractical due to the dynamic diversity of human activities, necessitating models that detect and segment out-of-distribution actions without manual annotation. To address this issue, we formally define the open-world action segmentation problem and propose a structured framework for detecting and segmenting unseen actions. Our framework introduces three key innovations: 1) an Enhanced Pyramid Graph Convolutional Network (EPGCN) with a novel decoder module for robust spatiotemporal feature upsampling. 2) Mixup-based training to synthesize out-of-distribution data, eliminating reliance on manual annotations. 3) A novel Temporal Clustering loss that groups in-distribution actions while distancing out-of-distribution samples. We evaluate our framework on two challenging human-object interaction recognition datasets: Bimanual Actions and 2 Hands and Object (H2O) datasets. Experimental results demonstrate significant improvements over state-of-the-art action segmentation models across multiple open-set evaluation metrics, achieving 16.9% and 34.6% relative gains in open-set segmentation (F1@50) and out-of-distribution detection performances (AUROC), respectively. Additionally, we conduct an in-depth ablation study to assess the impact of each proposed component, identifying the optimal framework configuration for open-world action segmentation.
Related papers
- NeurNCD: Novel Class Discovery via Implicit Neural Representation [4.498082064000176]
NeurNCD is a versatile and data-efficient framework for novel class discovery.<n>Our framework achieves superior segmentation performance in both open and closed-world settings.<n>Our method significantly outperforms state-of-the-art approaches on the NYUv2 and Replica datasets.
arXiv Detail & Related papers (2025-06-06T16:43:34Z) - One-shot In-context Part Segmentation [97.77292483684877]
We present the One-shot In-context Part (OIParts) framework to tackle the challenges of part segmentation.<n>Our framework offers a novel approach to part segmentation that is training-free, flexible, and data-efficient.<n>We have achieved remarkable segmentation performance across diverse object categories.
arXiv Detail & Related papers (2025-03-03T03:50:54Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Multi-body SE(3) Equivariance for Unsupervised Rigid Segmentation and
Motion Estimation [49.56131393810713]
We present an SE(3) equivariant architecture and a training strategy to tackle this task in an unsupervised manner.
Our method excels in both model performance and computational efficiency, with only 0.25M parameters and 0.92G FLOPs.
arXiv Detail & Related papers (2023-06-08T22:55:32Z) - Proposal-Based Multiple Instance Learning for Weakly-Supervised Temporal
Action Localization [98.66318678030491]
Weakly-supervised temporal action localization aims to localize and recognize actions in untrimmed videos with only video-level category labels during training.
We propose a novel Proposal-based Multiple Instance Learning (P-MIL) framework that directly classifies the candidate proposals in both the training and testing stages.
arXiv Detail & Related papers (2023-05-29T02:48:04Z) - Leveraging triplet loss for unsupervised action segmentation [0.0]
We propose a fully unsupervised framework that learns action representations suitable for the action segmentation task from the single input video itself.
Our method is a deep metric learning approach rooted in a shallow network with a triplet loss operating on similarity distributions.
Under these circumstances, we successfully recover temporal boundaries in the learned action representations with higher quality compared with existing unsupervised approaches.
arXiv Detail & Related papers (2023-04-13T11:10:16Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - ASM-Loc: Action-aware Segment Modeling for Weakly-Supervised Temporal
Action Localization [36.90693762365237]
Weakly-supervised temporal action localization aims to recognize and localize action segments in untrimmed videos given only video-level action labels for training.
We propose system, a novel WTAL framework that enables explicit, action-aware segment modeling beyond standard MIL-based methods.
Our framework entails three segment-centric components: (i) dynamic segment sampling for compensating the contribution of short actions; (ii) intra- and inter-segment attention for modeling action dynamics and capturing temporal dependencies; (iii) pseudo instance-level supervision for improving action boundary prediction.
arXiv Detail & Related papers (2022-03-29T01:59:26Z) - Cross-modal Consensus Network for Weakly Supervised Temporal Action
Localization [74.34699679568818]
Weakly supervised temporal action localization (WS-TAL) is a challenging task that aims to localize action instances in the given video with video-level categorical supervision.
We propose a cross-modal consensus network (CO2-Net) to tackle this problem.
arXiv Detail & Related papers (2021-07-27T04:21:01Z) - Unsupervised Action Segmentation with Self-supervised Feature Learning
and Co-occurrence Parsing [32.66011849112014]
temporal action segmentation is a task to classify each frame in the video with an action label.
In this work we explore a self-supervised method that operates on a corpus of unlabeled videos and predicts a likely set of temporal segments across the videos.
We develop CAP, a novel co-occurrence action parsing algorithm that can not only capture the correlation among sub-actions underlying the structure of activities, but also estimate the temporal trajectory of the sub-actions in an accurate and general way.
arXiv Detail & Related papers (2021-05-29T00:29:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.