Automated anatomy-based post-processing reduces false positives and improved interpretability of deep learning intracranial aneurysm detection
- URL: http://arxiv.org/abs/2507.00832v1
- Date: Tue, 01 Jul 2025 15:03:43 GMT
- Title: Automated anatomy-based post-processing reduces false positives and improved interpretability of deep learning intracranial aneurysm detection
- Authors: Jisoo Kim, Chu-Hsuan Lin, Alberto Ceballos-Arroyo, Ping Liu, Huaizu Jiang, Shrikanth Yadav, Qi Wan, Lei Qin, Geoffrey S Young,
- Abstract summary: We employ an automated, anatomy-based, hybrid artery-vein segmentation post-processing method to reduce false positive rates.<n>Method 5 performed best, reducing CPM-Net FP by 70.6% (89/126) and 3D-CNN-TR FP by 51.6% (92), without reducing TP.
- Score: 10.21981292321539
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Introduction: Deep learning (DL) models can help detect intracranial aneurysms on CTA, but high false positive (FP) rates remain a barrier to clinical translation, despite improvement in model architectures and strategies like detection threshold tuning. We employed an automated, anatomy-based, heuristic-learning hybrid artery-vein segmentation post-processing method to further reduce FPs. Methods: Two DL models, CPM-Net and a deformable 3D convolutional neural network-transformer hybrid (3D-CNN-TR), were trained with 1,186 open-source CTAs (1,373 annotated aneurysms), and evaluated with 143 held-out private CTAs (218 annotated aneurysms). Brain, artery, vein, and cavernous venous sinus (CVS) segmentation masks were applied to remove possible FPs in the DL outputs that overlapped with: (1) brain mask; (2) vein mask; (3) vein more than artery masks; (4) brain plus vein mask; (5) brain plus vein more than artery masks. Results: CPM-Net yielded 139 true-positives (TP); 79 false-negative (FN); 126 FP. 3D-CNN-TR yielded 179 TP; 39 FN; 182 FP. FPs were commonly extracranial (CPM-Net 27.3%; 3D-CNN-TR 42.3%), venous (CPM-Net 56.3%; 3D-CNN-TR 29.1%), arterial (CPM-Net 11.9%; 3D-CNN-TR 53.3%), and non-vascular (CPM-Net 25.4%; 3D-CNN-TR 9.3%) structures. Method 5 performed best, reducing CPM-Net FP by 70.6% (89/126) and 3D-CNN-TR FP by 51.6% (94/182), without reducing TP, lowering the FP/case rate from 0.88 to 0.26 for CPM-NET, and from 1.27 to 0.62 for the 3D-CNN-TR. Conclusion: Anatomy-based, interpretable post-processing can improve DL-based aneurysm detection model performance. More broadly, automated, domain-informed, hybrid heuristic-learning processing holds promise for improving the performance and clinical acceptance of aneurysm detection models.
Related papers
- A weakly-supervised deep learning model for fast localisation and delineation of the skeleton, internal organs, and spinal canal on Whole-Body Diffusion-Weighted MRI (WB-DWI) [0.0]
Apparent Diffusion Coefficient (ADC) values and Total Diffusion Volume (TDV) from Whole-body diffusion-weighted MRI (WB-DWI) are recognized cancer imaging biomarkers.<n>As a first step, we propose an algorithm to generate fast and reproducible probability maps of the skeleton, adjacent internal organs (liver, spleen, urinary bladder, and kidneys), and spinal canal.
arXiv Detail & Related papers (2025-03-26T17:03:46Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.<n>This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Enhancing mTBI Diagnosis with Residual Triplet Convolutional Neural
Network Using 3D CT [1.0621519762024807]
We introduce an innovative approach to enhance mTBI diagnosis using 3D Computed Tomography (CT) images.
We propose a Residual Triplet Convolutional Neural Network (RTCNN) model to distinguish between mTBI cases and healthy ones.
Our RTCNN model shows promising performance in mTBI diagnosis, achieving an average accuracy of 94.3%, a sensitivity of 94.1%, and a specificity of 95.2%.
arXiv Detail & Related papers (2023-11-23T20:41:46Z) - Automated Precision Localization of Peripherally Inserted Central
Catheter Tip through Model-Agnostic Multi-Stage Networks [3.5255361096618523]
Peripherally inserted central catheters (PICCs) have been widely used as one of the representative central venous lines (CVCs) due to their long-term intravascular access with low infectivity.
PICCs have a fatal drawback of a high frequency of tip mispositions, increasing the risk of puncture, embolism, and complications such as cardiac arrhythmias.
Various attempts have been made by using the latest deep learning (DL) technologies to automatically and precisely detect it.
This study aimed to develop a system generally applied to existing models and to restore the PICC line more exactly by removing the
arXiv Detail & Related papers (2022-06-14T10:26:47Z) - 3D Structural Analysis of the Optic Nerve Head to Robustly Discriminate
Between Papilledema and Optic Disc Drusen [44.754910718620295]
We developed a deep learning algorithm to identify major tissue structures of the optic nerve head (ONH) in 3D optical coherence tomography ( OCT) scans.
A classification algorithm was designed using 150 OCT volumes to perform 3-class classifications (1: ODD, 2: papilledema, 3: healthy) strictly from their drusen and prelamina swelling scores.
Our AI approach accurately discriminated ODD from papilledema, using a single OCT scan.
arXiv Detail & Related papers (2021-12-18T17:05:53Z) - Automated Pulmonary Embolism Detection from CTPA Images Using an
End-to-End Convolutional Neural Network [31.58557856188164]
This study presents an end-to-end trainable convolutional neural network (CNN) for detecting pulmonary embolisms (PEs)
Our system achieves a sensitivity of 63.2%, 78.9% and 86.8% at 2 false positives per volume at 0mm, 2mm and 5mm localization error.
arXiv Detail & Related papers (2021-11-10T03:01:55Z) - A self-supervised learning strategy for postoperative brain cavity
segmentation simulating resections [46.414990784180546]
Convolutional neural networks (CNNs) are the state-of-the-art image segmentation technique.
CNNs require large annotated datasets for training.
Self-supervised learning strategies can leverage unlabeled data for training.
arXiv Detail & Related papers (2021-05-24T12:27:06Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
3D delineation of anatomical structures is a cardinal goal in medical imaging analysis.
Prior to deep learning, statistical shape models that imposed anatomical constraints and produced high quality surfaces were a core technology.
We present deep implicit statistical shape models (DISSMs), a new approach to delineation that marries the representation power of CNNs with the robustness of SSMs.
arXiv Detail & Related papers (2021-04-07T01:15:06Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - COVID-MTL: Multitask Learning with Shift3D and Random-weighted Loss for
Automated Diagnosis and Severity Assessment of COVID-19 [39.57518533765393]
There is an urgent need for automated methods to assist accurate and effective assessment of COVID-19.
We present an end-to-end multitask learning framework (COVID-MTL) that is capable of automated and simultaneous detection (against both radiology and NAT) and severity assessment of COVID-19.
arXiv Detail & Related papers (2020-12-10T08:30:46Z) - Accurate Prostate Cancer Detection and Segmentation on Biparametric MRI
using Non-local Mask R-CNN with Histopathological Ground Truth [0.0]
We developed deep machine learning models to improve the detection and segmentation of intraprostatic lesions on bp-MRI.
Models were trained using MRI-based delineations with prostatectomy-based delineations.
With prostatectomy-based delineations, the non-local Mask R-CNN with fine-tuning and self-training significantly improved all evaluation metrics.
arXiv Detail & Related papers (2020-10-28T21:07:09Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.