A Practical SAFE-AI Framework for Small and Medium-Sized Enterprises Developing Medical Artificial Intelligence Ethics Policies
- URL: http://arxiv.org/abs/2507.01304v2
- Date: Thu, 03 Jul 2025 14:23:46 GMT
- Title: A Practical SAFE-AI Framework for Small and Medium-Sized Enterprises Developing Medical Artificial Intelligence Ethics Policies
- Authors: Ion Nemteanu, Adir Mancebo Jr., Leslie Joe, Ryan Lopez, Patricia Lopez, Warren Woodrich Pettine,
- Abstract summary: We introduce the Scalable Agile Framework for Execution in AI (SAFE-AI)<n>SAFE-AI balances ethical rigor with business priorities by embedding ethical oversight into standard Agile-based product development.<n>A core component of this framework are responsibility metrics using scenario-based probability analogy mapping.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) offers incredible possibilities for patient care, but raises significant ethical issues, such as the potential for bias. Powerful ethical frameworks exist to minimize these issues, but are often developed for academic or regulatory environments and tend to be comprehensive but overly prescriptive, making them difficult to operationalize within fast-paced, resource-constrained environments. We introduce the Scalable Agile Framework for Execution in AI (SAFE-AI) designed to balance ethical rigor with business priorities by embedding ethical oversight into standard Agile-based product development workflows. The framework emphasizes the early establishment of testable acceptance criteria, fairness metrics, and transparency metrics to manage model uncertainty, while also promoting continuous monitoring and re-evaluation of these metrics across the AI lifecycle. A core component of this framework are responsibility metrics using scenario-based probability analogy mapping designed to enhance transparency and stakeholder trust. This ensures that retraining or tuning activities are subject to lightweight but meaningful ethical review. By focusing on the minimum necessary requirements for responsible development, our framework offers a scalable, business-aligned approach to ethical AI suitable for organizations without dedicated ethics teams.
Related papers
- Ethical AI: Towards Defining a Collective Evaluation Framework [0.3413711585591077]
Artificial Intelligence (AI) is transforming sectors such as healthcare, finance, and autonomous systems.<n>Yet its rapid integration raises urgent ethical concerns related to data ownership, privacy, and systemic bias.<n>This article proposes a modular ethical assessment framework built on ontological blocks of meaning-discrete, interpretable units.
arXiv Detail & Related papers (2025-05-30T21:10:47Z) - Towards Developing Ethical Reasoners: Integrating Probabilistic Reasoning and Decision-Making for Complex AI Systems [4.854297874710511]
A computational ethics framework is essential for AI and autonomous systems operating in complex, real-world environments.<n>Existing approaches often lack the adaptability needed to integrate ethical principles into dynamic and ambiguous contexts.<n>We outline the necessary ingredients for building a holistic, meta-level framework that combines intermediate representations, probabilistic reasoning, and knowledge representation.
arXiv Detail & Related papers (2025-02-28T17:25:11Z) - Human services organizations and the responsible integration of AI: Considering ethics and contextualizing risk(s) [0.0]
Authors argue that ethical concerns about AI deployment vary significantly based on implementation context and specific use cases.<n>They propose a dimensional risk assessment approach that considers factors like data sensitivity, professional oversight requirements, and potential impact on client wellbeing.
arXiv Detail & Related papers (2025-01-20T19:38:21Z) - Technology as uncharted territory: Contextual integrity and the notion of AI as new ethical ground [55.2480439325792]
I argue that efforts to promote responsible and ethical AI can inadvertently contribute to and seemingly legitimize this disregard for established contextual norms.<n>I question the current narrow prioritization in AI ethics of moral innovation over moral preservation.
arXiv Detail & Related papers (2024-12-06T15:36:13Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - Ethical and Scalable Automation: A Governance and Compliance Framework for Business Applications [0.0]
This paper introduces a framework ensuring that AI must be ethical, controllable, viable, and desirable.<n>Different case studies validate this framework by integrating AI in both academic and practical environments.
arXiv Detail & Related papers (2024-09-25T12:39:28Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.<n>Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.<n>However, the deployment of these agents in physical environments presents significant safety challenges.<n>This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Fair by design: A sociotechnical approach to justifying the fairness of AI-enabled systems across the lifecycle [0.8164978442203773]
Fairness is one of the most commonly identified ethical principles in existing AI guidelines.
The development of fair AI-enabled systems is required by new and emerging AI regulation.
arXiv Detail & Related papers (2024-06-13T12:03:29Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Empowered and Embedded: Ethics and Agile Processes [60.63670249088117]
We argue that ethical considerations need to be embedded into the (agile) software development process.
We put emphasis on the possibility to implement ethical deliberations in already existing and well established agile software development processes.
arXiv Detail & Related papers (2021-07-15T11:14:03Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.