Activation Reward Models for Few-Shot Model Alignment
- URL: http://arxiv.org/abs/2507.01368v1
- Date: Wed, 02 Jul 2025 05:10:29 GMT
- Title: Activation Reward Models for Few-Shot Model Alignment
- Authors: Tianning Chai, Chancharik Mitra, Brandon Huang, Gautam Rajendrakumar Gare, Zhiqiu Lin, Assaf Arbelle, Leonid Karlinsky, Rogerio Feris, Trevor Darrell, Deva Ramanan, Roei Herzig,
- Abstract summary: We introduce Activation Reward Models (Activation RMs)<n>Activation RMs leverage activation steering to construct well-aligned reward signals using minimal supervision and no additional model finetuning.<n>We demonstrate the effectiveness of Activation RMs in mitigating reward hacking behaviors, highlighting their utility for safety-critical applications.
- Score: 77.37511364793515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aligning Large Language Models (LLMs) and Large Multimodal Models (LMMs) to human preferences is a central challenge in improving the quality of the models' generative outputs for real-world applications. A common approach is to use reward modeling to encode preferences, enabling alignment via post-training using reinforcement learning. However, traditional reward modeling is not easily adaptable to new preferences because it requires a separate reward model, commonly trained on large preference datasets. To address this, we introduce Activation Reward Models (Activation RMs) -- a novel few-shot reward modeling method that leverages activation steering to construct well-aligned reward signals using minimal supervision and no additional model finetuning. Activation RMs outperform existing few-shot reward modeling approaches such as LLM-as-a-judge with in-context learning, voting-based scoring, and token probability scoring on standard reward modeling benchmarks. Furthermore, we demonstrate the effectiveness of Activation RMs in mitigating reward hacking behaviors, highlighting their utility for safety-critical applications. Toward this end, we propose PreferenceHack, a novel few-shot setting benchmark, the first to test reward models on reward hacking in a paired preference format. Finally, we show that Activation RM achieves state-of-the-art performance on this benchmark, surpassing even GPT-4o.
Related papers
- GRAM: A Generative Foundation Reward Model for Reward Generalization [48.63394690265176]
We develop a generative reward model that is first trained via large-scale unsupervised learning and then fine-tuned via supervised learning.<n>This model generalizes well across several tasks, including response ranking, reinforcement learning from human feedback, and task adaptation with fine-tuning.
arXiv Detail & Related papers (2025-06-17T04:34:27Z) - Fake it till You Make it: Reward Modeling as Discriminative Prediction [49.31309674007382]
GAN-RM is an efficient reward modeling framework that eliminates manual preference annotation and explicit quality dimension engineering.<n>Our method trains the reward model through discrimination between a small set of representative, unpaired target samples.<n>Experiments demonstrate our GAN-RM's effectiveness across multiple key applications.
arXiv Detail & Related papers (2025-06-16T17:59:40Z) - Agentic Reward Modeling: Integrating Human Preferences with Verifiable Correctness Signals for Reliable Reward Systems [54.4392552373835]
Reward models (RMs) are crucial for the training and inference-time scaling up of large language models (LLMs)<n>We propose agentic reward modeling, a reward system that combines reward models with verifiable correctness signals to provide reliable rewards.<n>We conduct comprehensive experiments on existing reward model benchmarks and inference time best-of-n searches on real-world downstream tasks.
arXiv Detail & Related papers (2025-02-26T17:19:12Z) - CARMO: Dynamic Criteria Generation for Context-Aware Reward Modelling [27.86204841898399]
Reward modeling in large language models is susceptible to reward hacking.<n>We propose Context-Aware Reward Modeling (CARMO) to mitigate this problem.<n>We establish a new state-of-the-art performance in zero-shot settings for generative models, achieving a 2.1% improvement on Reward Bench.
arXiv Detail & Related papers (2024-10-28T21:18:49Z) - HAF-RM: A Hybrid Alignment Framework for Reward Model Training [51.59246299566669]
We propose a hybrid alignment framework HaF-RM for reward model training.<n>It offers a principled and effective approach to enhancing the performance and alignment of reward models.
arXiv Detail & Related papers (2024-07-04T23:26:56Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
We present RewardBench, a benchmark dataset and code-base for evaluation of reward models.
The dataset is a collection of prompt-chosen-rejected trios spanning chat, reasoning, and safety.
On the RewardBench leaderboard, we evaluate reward models trained with a variety of methods.
arXiv Detail & Related papers (2024-03-20T17:49:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.