Evaluating LLM Agent Collusion in Double Auctions
- URL: http://arxiv.org/abs/2507.01413v1
- Date: Wed, 02 Jul 2025 07:06:49 GMT
- Title: Evaluating LLM Agent Collusion in Double Auctions
- Authors: Kushal Agrawal, Verona Teo, Juan J. Vazquez, Sudarsh Kunnavakkam, Vishak Srikanth, Andy Liu,
- Abstract summary: We study the behavior of large language models (LLMs) acting as sellers in simulated double auction markets.<n>We find that direct seller communication increases collusive tendencies, the propensity to collude varies across models, and environmental pressures, such as oversight and urgency from authority figures, influence collusive behavior.
- Score: 1.3194391758295114
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated impressive capabilities as autonomous agents with rapidly expanding applications in various domains. As these agents increasingly engage in socioeconomic interactions, identifying their potential for undesirable behavior becomes essential. In this work, we examine scenarios where they can choose to collude, defined as secretive cooperation that harms another party. To systematically study this, we investigate the behavior of LLM agents acting as sellers in simulated continuous double auction markets. Through a series of controlled experiments, we analyze how parameters such as the ability to communicate, choice of model, and presence of environmental pressures affect the stability and emergence of seller collusion. We find that direct seller communication increases collusive tendencies, the propensity to collude varies across models, and environmental pressures, such as oversight and urgency from authority figures, influence collusive behavior. Our findings highlight important economic and ethical considerations for the deployment of LLM-based market agents.
Related papers
- Corrupted by Reasoning: Reasoning Language Models Become Free-Riders in Public Goods Games [87.5673042805229]
How large language models balance self-interest and collective well-being is a critical challenge for ensuring alignment, robustness, and safe deployment.<n>We adapt a public goods game with institutional choice from behavioral economics, allowing us to observe how different LLMs navigate social dilemmas.<n>Surprisingly, we find that reasoning LLMs, such as the o1 series, struggle significantly with cooperation.
arXiv Detail & Related papers (2025-06-29T15:02:47Z) - Model Editing as a Double-Edged Sword: Steering Agent Ethical Behavior Toward Beneficence or Harm [57.00627691433355]
We frame agent behavior steering as a model editing task, which we term Behavior Editing.<n>We introduce BehaviorBench, a benchmark grounded in psychological moral theories.<n>We demonstrate that Behavior Editing can be used to promote ethical and benevolent behavior or, conversely, to induce harmful or malicious behavior.
arXiv Detail & Related papers (2025-06-25T16:51:51Z) - Empowering Economic Simulation for Massively Multiplayer Online Games through Generative Agent-Based Modeling [53.26311872828166]
We take a preliminary step in introducing a novel approach using Large Language Models (LLMs) in MMO economy simulation.<n>We design LLM-driven agents with human-like decision-making and adaptability.<n>These agents are equipped with the abilities of role-playing, perception, memory, and reasoning, addressing the aforementioned challenges effectively.
arXiv Detail & Related papers (2025-06-05T07:21:13Z) - Herd Behavior: Investigating Peer Influence in LLM-based Multi-Agent Systems [7.140644659869317]
We investigate the dynamics of peer influence in multi-agent systems based on Large Language Models (LLMs)<n>We show that the gap between self-confidence and perceived confidence in peers significantly impacts an agent's likelihood to conform.<n>We find that the format in which peer information is presented plays a critical role in modulating the strength of herd behavior.
arXiv Detail & Related papers (2025-05-27T12:12:56Z) - Shifting Power: Leveraging LLMs to Simulate Human Aversion in ABMs of Bilateral Financial Exchanges, A bond market study [15.379345372327375]
TRIBE is an agent-based model augmented with a large language model (LLM) to simulate human-like decision-making in trading environments.<n>We show that incorporating human-like variability shifts power dynamics towards clients and can disproportionately affect the entire system.
arXiv Detail & Related papers (2025-03-01T03:15:13Z) - LMAgent: A Large-scale Multimodal Agents Society for Multi-user Simulation [66.52371505566815]
Large language models (LLMs)-based AI agents have made significant progress, enabling them to achieve human-like intelligence.<n>We present LMAgent, a very large-scale and multimodal agents society based on multimodal LLMs.<n>In LMAgent, besides chatting with friends, the agents can autonomously browse, purchase, and review products, even perform live streaming e-commerce.
arXiv Detail & Related papers (2024-12-12T12:47:09Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
Large Language Models (LLMs) have created new disruptive possibilities for persuasive communication.
In areas such as politics, marketing, public health, e-commerce, and charitable giving, such LLM Systems have already achieved human-level or even super-human persuasiveness.
Our survey suggests that the current and future potential of LLM-based persuasion poses profound ethical and societal risks.
arXiv Detail & Related papers (2024-11-11T10:05:52Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - Cooperate or Collapse: Emergence of Sustainable Cooperation in a Society of LLM Agents [101.17919953243107]
GovSim is a generative simulation platform designed to study strategic interactions and cooperative decision-making in large language models (LLMs)<n>We find that all but the most powerful LLM agents fail to achieve a sustainable equilibrium in GovSim, with the highest survival rate below 54%.<n>We show that agents that leverage "Universalization"-based reasoning, a theory of moral thinking, are able to achieve significantly better sustainability.
arXiv Detail & Related papers (2024-04-25T15:59:16Z) - Affordable Generative Agents [16.372072265248192]
Affordable Generative Agents (AGA) is a framework for enabling the generation of believable and low-cost interactions on both agent-environment and inter-agents levels.
Our code is publicly available at: https://github.com/AffordableGenerativeAgents/Affordable-Generative-Agents.
arXiv Detail & Related papers (2024-02-03T06:16:28Z) - How Far Are LLMs from Believable AI? A Benchmark for Evaluating the Believability of Human Behavior Simulation [46.42384207122049]
We design SimulateBench to evaluate the believability of large language models (LLMs) when simulating human behaviors.
Based on SimulateBench, we evaluate the performances of 10 widely used LLMs when simulating characters.
arXiv Detail & Related papers (2023-12-28T16:51:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.