Penalizing Transparency? How AI Disclosure and Author Demographics Shape Human and AI Judgments About Writing
- URL: http://arxiv.org/abs/2507.01418v1
- Date: Wed, 02 Jul 2025 07:18:09 GMT
- Title: Penalizing Transparency? How AI Disclosure and Author Demographics Shape Human and AI Judgments About Writing
- Authors: Inyoung Cheong, Alicia Guo, Mina Lee, Zhehui Liao, Kowe Kadoma, Dongyoung Go, Joseph Chee Chang, Peter Henderson, Mor Naaman, Amy X. Zhang,
- Abstract summary: This study investigates how AI disclosure statement affects perceptions of writing quality.<n>We find that both human and LLM raters consistently penalize disclosed AI use.<n>But only LLM raters exhibit demographic interaction effects: they favor articles attributed to women or Black authors when no disclosure is present.
- Score: 16.237684467706924
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As AI integrates in various types of human writing, calls for transparency around AI assistance are growing. However, if transparency operates on uneven ground and certain identity groups bear a heavier cost for being honest, then the burden of openness becomes asymmetrical. This study investigates how AI disclosure statement affects perceptions of writing quality, and whether these effects vary by the author's race and gender. Through a large-scale controlled experiment, both human raters (n = 1,970) and LLM raters (n = 2,520) evaluated a single human-written news article while disclosure statements and author demographics were systematically varied. This approach reflects how both human and algorithmic decisions now influence access to opportunities (e.g., hiring, promotion) and social recognition (e.g., content recommendation algorithms). We find that both human and LLM raters consistently penalize disclosed AI use. However, only LLM raters exhibit demographic interaction effects: they favor articles attributed to women or Black authors when no disclosure is present. But these advantages disappear when AI assistance is revealed. These findings illuminate the complex relationships between AI disclosure and author identity, highlighting disparities between machine and human evaluation patterns.
Related papers
- Labeling Messages as AI-Generated Does Not Reduce Their Persuasive Effects [33.16943695290958]
One prominent policy proposal requires explicitly labeling AI-generated content to increase transparency and encourage critical thinking about the information.<n>We conducted a survey experiment on a diverse sample of Americans.<n>We found that messages were generally persuasive, influencing participants' views of the policies by 9.74 percentage points on average.
arXiv Detail & Related papers (2025-04-14T04:22:39Z) - Human aversion? Do AI Agents Judge Identity More Harshly Than Performance [0.06554326244334868]
We investigate how AI agents based on large language models assess and integrate human input.<n>We find that the AI system systematically discounts human advice, penalizing human errors more severely than algorithmic errors.
arXiv Detail & Related papers (2025-03-31T02:05:27Z) - Almost AI, Almost Human: The Challenge of Detecting AI-Polished Writing [55.2480439325792]
This study systematically evaluations twelve state-of-the-art AI-text detectors using our AI-Polished-Text Evaluation dataset.<n>Our findings reveal that detectors frequently flag even minimally polished text as AI-generated, struggle to differentiate between degrees of AI involvement, and exhibit biases against older and smaller models.
arXiv Detail & Related papers (2025-02-21T18:45:37Z) - Human Bias in the Face of AI: The Role of Human Judgement in AI Generated Text Evaluation [48.70176791365903]
This study explores how bias shapes the perception of AI versus human generated content.
We investigated how human raters respond to labeled and unlabeled content.
arXiv Detail & Related papers (2024-09-29T04:31:45Z) - Rolling in the deep of cognitive and AI biases [1.556153237434314]
We argue that there is urgent need to understand AI as a sociotechnical system, inseparable from the conditions in which it is designed, developed and deployed.
We address this critical issue by following a radical new methodology under which human cognitive biases become core entities in our AI fairness overview.
We introduce a new mapping, which justifies the humans to AI biases and we detect relevant fairness intensities and inter-dependencies.
arXiv Detail & Related papers (2024-07-30T21:34:04Z) - Human intuition as a defense against attribute inference [4.916067949075847]
Attribute inference has become a major threat to privacy.
One way to tackle this threat is to strategically modify one's publicly available data in order to keep one's private information hidden from attribute inference.
We evaluate people's ability to perform this task, and compare it against algorithms designed for this purpose.
arXiv Detail & Related papers (2023-04-24T06:54:17Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - FATE in AI: Towards Algorithmic Inclusivity and Accessibility [0.0]
To prevent algorithmic disparities, fairness, accountability, transparency, and ethics (FATE) in AI are being implemented.
This study examines FATE-related desiderata, particularly transparency and ethics, in areas of the global South that are underserved by AI.
To promote inclusivity, a community-led strategy is proposed to collect and curate representative data for responsible AI design.
arXiv Detail & Related papers (2023-01-03T15:08:10Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - AI Explainability 360: Impact and Design [120.95633114160688]
In 2019, we created AI Explainability 360 (Arya et al. 2020), an open source software toolkit featuring ten diverse and state-of-the-art explainability methods.
This paper examines the impact of the toolkit with several case studies, statistics, and community feedback.
The paper also describes the flexible design of the toolkit, examples of its use, and the significant educational material and documentation available to its users.
arXiv Detail & Related papers (2021-09-24T19:17:09Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
We conduct a mixed-methods study of how two different groups--people with and without AI background--perceive different types of AI explanations.
We find that (1) both groups showed unwarranted faith in numbers for different reasons and (2) each group found value in different explanations beyond their intended design.
arXiv Detail & Related papers (2021-07-28T17:32:04Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
We train automatic recruitment algorithms using a set of multimodal synthetic profiles consciously scored with gender and racial biases.
Our methodology and results show how to generate fairer AI-based tools in general, and in particular fairer automated recruitment systems.
arXiv Detail & Related papers (2020-04-15T15:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.