Exploring Classical Piano Performance Generation with Expressive Music Variational AutoEncoder
- URL: http://arxiv.org/abs/2507.01582v1
- Date: Wed, 02 Jul 2025 10:54:23 GMT
- Title: Exploring Classical Piano Performance Generation with Expressive Music Variational AutoEncoder
- Authors: Jing Luo, Xinyu Yang, Jie Wei,
- Abstract summary: This paper addresses the challenge of generating classical piano performances from scratch, aiming to emulate the dual roles of composer and pianist.<n>We introduce the Expressive Compound Word representation, which effectively captures both the metrical structure and expressive nuances of classical performances.<n>We propose the Expressive Music Variational AutoEncoder (XMVAE), a model featuring two branches: a Vector Quantized Variational AutoEncoder (VQ-VAE) branch that generates score-related content, and a vanilla VAE branch that produces expressive details, fulfilling the role of Pianist.
- Score: 15.668253435545921
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The creativity of classical music arises not only from composers who craft the musical sheets but also from performers who interpret the static notations with expressive nuances. This paper addresses the challenge of generating classical piano performances from scratch, aiming to emulate the dual roles of composer and pianist in the creative process. We introduce the Expressive Compound Word (ECP) representation, which effectively captures both the metrical structure and expressive nuances of classical performances. Building on this, we propose the Expressive Music Variational AutoEncoder (XMVAE), a model featuring two branches: a Vector Quantized Variational AutoEncoder (VQ-VAE) branch that generates score-related content, representing the Composer, and a vanilla VAE branch that produces expressive details, fulfilling the role of Pianist. These branches are jointly trained with similar Seq2Seq architectures, leveraging a multiscale encoder to capture beat-level contextual information and an orthogonal Transformer decoder for efficient compound tokens decoding. Both objective and subjective evaluations demonstrate that XMVAE generates classical performances with superior musical quality compared to state-of-the-art models. Furthermore, pretraining the Composer branch on extra musical score datasets contribute to a significant performance gain.
Related papers
- Scaling Self-Supervised Representation Learning for Symbolic Piano Performance [52.661197827466886]
We study the capabilities of generative autoregressive transformer models trained on large amounts of symbolic solo-piano transcriptions.<n>We use a comparatively smaller, high-quality subset to finetune models to produce musical continuations, perform symbolic classification tasks, and produce general-purpose contrastive MIDI embeddings.
arXiv Detail & Related papers (2025-06-30T14:00:14Z) - PerTok: Expressive Encoding and Modeling of Symbolic Musical Ideas and Variations [0.3683202928838613]
Cadenza is a new multi-stage generative framework for predicting expressive variations of symbolic musical ideas.
The proposed framework comprises of two sequential stages: 1) Composer and 2) Performer.
Our framework is designed, researched and implemented with the objective of providing inspiration for musicians.
arXiv Detail & Related papers (2024-10-02T22:11:31Z) - MARBLE: Music Audio Representation Benchmark for Universal Evaluation [79.25065218663458]
We introduce the Music Audio Representation Benchmark for universaL Evaluation, termed MARBLE.
It aims to provide a benchmark for various Music Information Retrieval (MIR) tasks by defining a comprehensive taxonomy with four hierarchy levels, including acoustic, performance, score, and high-level description.
We then establish a unified protocol based on 14 tasks on 8 public-available datasets, providing a fair and standard assessment of representations of all open-sourced pre-trained models developed on music recordings as baselines.
arXiv Detail & Related papers (2023-06-18T12:56:46Z) - Simple and Controllable Music Generation [94.61958781346176]
MusicGen is a single Language Model (LM) that operates over several streams of compressed discrete music representation, i.e., tokens.
Unlike prior work, MusicGen is comprised of a single-stage transformer LM together with efficient token interleaving patterns.
arXiv Detail & Related papers (2023-06-08T15:31:05Z) - GETMusic: Generating Any Music Tracks with a Unified Representation and
Diffusion Framework [58.64512825534638]
Symbolic music generation aims to create musical notes, which can help users compose music.
We introduce a framework known as GETMusic, with GET'' standing for GEnerate music Tracks''
GETScore represents musical notes as tokens and organizes tokens in a 2D structure, with tracks stacked vertically and progressing horizontally over time.
Our proposed representation, coupled with the non-autoregressive generative model, empowers GETMusic to generate music with any arbitrary source-target track combinations.
arXiv Detail & Related papers (2023-05-18T09:53:23Z) - Composer: Creative and Controllable Image Synthesis with Composable
Conditions [57.78533372393828]
Recent large-scale generative models learned on big data are capable of synthesizing incredible images yet suffer from limited controllability.
This work offers a new generation paradigm that allows flexible control of the output image, such as spatial layout and palette, while maintaining the synthesis quality and model creativity.
arXiv Detail & Related papers (2023-02-20T05:48:41Z) - Compose & Embellish: Well-Structured Piano Performance Generation via A
Two-Stage Approach [36.49582705724548]
We devise a two-stage Transformer-based framework that Composes a lead sheet first, and then Embellishes it with accompaniment and expressive touches.
Our objective and subjective experiments show that Compose & Embellish shrinks the gap in structureness between a current state of the art and real performances by half, and improves other musical aspects such as richness and coherence as well.
arXiv Detail & Related papers (2022-09-17T01:20:59Z) - The Power of Reuse: A Multi-Scale Transformer Model for Structural
Dynamic Segmentation in Symbolic Music Generation [6.0949335132843965]
Symbolic Music Generation relies on the contextual representation capabilities of the generative model.
We propose a multi-scale Transformer, which uses coarse-decoder and fine-decoders to model the contexts at the global and section-level.
Our model is evaluated on two open MIDI datasets, and experiments show that our model outperforms the best contemporary symbolic music generative models.
arXiv Detail & Related papers (2022-05-17T18:48:14Z) - Symphony Generation with Permutation Invariant Language Model [57.75739773758614]
We present a symbolic symphony music generation solution, SymphonyNet, based on a permutation invariant language model.
A novel transformer decoder architecture is introduced as backbone for modeling extra-long sequences of symphony tokens.
Our empirical results show that our proposed approach can generate coherent, novel, complex and harmonious symphony compared to human composition.
arXiv Detail & Related papers (2022-05-10T13:08:49Z) - Deep Performer: Score-to-Audio Music Performance Synthesis [30.95307878579825]
Deep Performer is a novel system for score-to-audio music performance synthesis.
Unlike speech, music often contains polyphony and long notes.
We show that our proposed model can synthesize music with clear polyphony and harmonic structures.
arXiv Detail & Related papers (2022-02-12T10:36:52Z) - Music Gesture for Visual Sound Separation [121.36275456396075]
"Music Gesture" is a keypoint-based structured representation to explicitly model the body and finger movements of musicians when they perform music.
We first adopt a context-aware graph network to integrate visual semantic context with body dynamics, and then apply an audio-visual fusion model to associate body movements with the corresponding audio signals.
arXiv Detail & Related papers (2020-04-20T17:53:46Z) - Continuous Melody Generation via Disentangled Short-Term Representations
and Structural Conditions [14.786601824794369]
We present a model for composing melodies given a user specified symbolic scenario combined with a previous music context.
Our model is capable of generating long melodies by regarding 8-beat note sequences as basic units, and shares consistent rhythm pattern structure with another specific song.
Results show that the music generated by our model tends to have salient repetition structures, rich motives, and stable rhythm patterns.
arXiv Detail & Related papers (2020-02-05T06:23:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.