Kernel Recursive Least Squares Dictionary Learning Algorithm
- URL: http://arxiv.org/abs/2507.01636v1
- Date: Wed, 02 Jul 2025 12:07:35 GMT
- Title: Kernel Recursive Least Squares Dictionary Learning Algorithm
- Authors: Ghasem Alipoor, Karl Skretting,
- Abstract summary: We propose an efficient online dictionary learning algorithm for kernel-based sparse representations.<n>In this framework, input signals are nonlinearly mapped to a high-dimensional feature space and represented sparsely using a virtual dictionary.
- Score: 2.5782420501870296
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose an efficient online dictionary learning algorithm for kernel-based sparse representations. In this framework, input signals are nonlinearly mapped to a high-dimensional feature space and represented sparsely using a virtual dictionary. At each step, the dictionary is updated recursively using a novel algorithm based on the recursive least squares (RLS) method. This update mechanism works with single samples or mini-batches and maintains low computational complexity. Experiments on four datasets across different domains show that our method not only outperforms existing online kernel dictionary learning approaches but also achieves classification accuracy close to that of batch-trained models, while remaining significantly more efficient.
Related papers
- Dictionary Learning Improves Patch-Free Circuit Discovery in Mechanistic
Interpretability: A Case Study on Othello-GPT [59.245414547751636]
We propose a circuit discovery framework alternative to activation patching.
Our framework suffers less from out-of-distribution and proves to be more efficient in terms of complexity.
We dig in a small transformer trained on a synthetic task named Othello and find a number of human-understandable fine-grained circuits inside of it.
arXiv Detail & Related papers (2024-02-19T15:04:53Z) - Convergence of alternating minimisation algorithms for dictionary
learning [4.5687771576879594]
We derive sufficient conditions for the convergence of two popular alternating minimisation algorithms for dictionary learning.
We show that given a well-behaved initialisation that is either within distance at most $1/log(K)$ to the generating dictionary or has a special structure ensuring that each element of the initialisation only points to one generating element, both algorithms will converge with geometric convergence rate to the generating dictionary.
arXiv Detail & Related papers (2023-04-04T12:58:47Z) - Unified Functional Hashing in Automatic Machine Learning [58.77232199682271]
We show that large efficiency gains can be obtained by employing a fast unified functional hash.
Our hash is "functional" in that it identifies equivalent candidates even if they were represented or coded differently.
We show dramatic improvements on multiple AutoML domains, including neural architecture search and algorithm discovery.
arXiv Detail & Related papers (2023-02-10T18:50:37Z) - Simple Alternating Minimization Provably Solves Complete Dictionary Learning [17.68684502400794]
This paper focuses on the noise-complete dictionary learning problem.<n>The goal is to represent a set of given signals as linear combinations of a small number of atoms from a learned dictionary.
arXiv Detail & Related papers (2022-10-23T18:30:45Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
We propose a novel algorithm that uses a random feature approximation (RFA) of the Neural Network Gaussian Process (NNGP) kernel.
Our algorithm provides at least a 100-fold speedup over KIP and can run on a single GPU.
Our new method, termed an RFA Distillation (RFAD), performs competitively with KIP and other dataset condensation algorithms in accuracy over a range of large-scale datasets.
arXiv Detail & Related papers (2022-10-21T15:56:13Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - Dictionary Learning Using Rank-One Atomic Decomposition (ROAD) [6.367823813868024]
Dictionary learning aims at seeking a dictionary under which the training data can be sparsely represented.
Road outperforms other benchmark algorithms for both synthetic data and real data.
arXiv Detail & Related papers (2021-10-25T10:29:52Z) - Dictionary Learning with Convex Update (ROMD) [6.367823813868024]
We propose a new type of dictionary learning algorithm called ROMD.
ROMD updates the whole dictionary at a time using convex matrices.
The advantages hence include both guarantees for dictionary update and faster of the whole dictionary learning.
arXiv Detail & Related papers (2021-10-13T11:14:38Z) - Online Orthogonal Dictionary Learning Based on Frank-Wolfe Method [3.198144010381572]
Dictionary learning is a widely used unsupervised learning method in signal processing and machine learning.
The proposed scheme includes a novel problem formulation and an efficient online algorithm design with convergence analysis.
Experiments with synthetic data and real-world sensor readings demonstrate the effectiveness and efficiency of the proposed scheme.
arXiv Detail & Related papers (2021-03-02T05:49:23Z) - Accelerating Text Mining Using Domain-Specific Stop Word Lists [57.76576681191192]
We present a novel approach for the automatic extraction of domain-specific words called the hyperplane-based approach.
The hyperplane-based approach can significantly reduce text dimensionality by eliminating irrelevant features.
Results indicate that the hyperplane-based approach can reduce the dimensionality of the corpus by 90% and outperforms mutual information.
arXiv Detail & Related papers (2020-11-18T17:42:32Z) - Anchor & Transform: Learning Sparse Embeddings for Large Vocabularies [60.285091454321055]
We design a simple and efficient embedding algorithm that learns a small set of anchor embeddings and a sparse transformation matrix.
On text classification, language modeling, and movie recommendation benchmarks, we show that ANT is particularly suitable for large vocabulary sizes.
arXiv Detail & Related papers (2020-03-18T13:07:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.