Adapting Language Models to Indonesian Local Languages: An Empirical Study of Language Transferability on Zero-Shot Settings
- URL: http://arxiv.org/abs/2507.01645v1
- Date: Wed, 02 Jul 2025 12:17:55 GMT
- Title: Adapting Language Models to Indonesian Local Languages: An Empirical Study of Language Transferability on Zero-Shot Settings
- Authors: Rifki Afina Putri,
- Abstract summary: We evaluate transferability of pre-trained language models to low-resource Indonesian local languages.<n>We group the target languages into three categories: seen, partially seen, and unseen.<n> Multilingual models perform best on seen languages, moderately on partially seen ones, and poorly on unseen languages.<n>We find that MAD-X significantly improves performance, especially for seen and partially seen languages, without requiring labeled data in the target language.
- Score: 1.1556013985948772
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we investigate the transferability of pre-trained language models to low-resource Indonesian local languages through the task of sentiment analysis. We evaluate both zero-shot performance and adapter-based transfer on ten local languages using models of different types: a monolingual Indonesian BERT, multilingual models such as mBERT and XLM-R, and a modular adapter-based approach called MAD-X. To better understand model behavior, we group the target languages into three categories: seen (included during pre-training), partially seen (not included but linguistically related to seen languages), and unseen (absent and unrelated in pre-training data). Our results reveal clear performance disparities across these groups: multilingual models perform best on seen languages, moderately on partially seen ones, and poorly on unseen languages. We find that MAD-X significantly improves performance, especially for seen and partially seen languages, without requiring labeled data in the target language. Additionally, we conduct a further analysis on tokenization and show that while subword fragmentation and vocabulary overlap with Indonesian correlate weakly with prediction quality, they do not fully explain the observed performance. Instead, the most consistent predictor of transfer success is the model's prior exposure to the language, either directly or through a related language.
Related papers
- The Impact of Model Scaling on Seen and Unseen Language Performance [2.012425476229879]
We study the performance and scaling behavior of multilingual Large Language Models across 204 languages.<n>Our findings show significant differences in scaling behavior between zero-shot and two-shot scenarios.<n>In two-shot settings, larger models show clear linear improvements in multilingual text classification.
arXiv Detail & Related papers (2025-01-10T00:10:21Z) - LDP: Generalizing to Multilingual Visual Information Extraction by Language Decoupled Pretraining [2.6638517946494535]
We propose a multilingual training paradigm LDP (Language Decoupled Pre-training) for better utilization of monolingual pre-training data.<n>Our proposed model LDM is first pre-trained on the language-independent data, where the language knowledge is decoupled by a diffusion model, and then the LDM is fine-tuned on the downstream languages.
arXiv Detail & Related papers (2024-12-19T07:31:40Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z) - Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of
Multilingual Language Models [73.11488464916668]
This study investigates the dynamics of the multilingual pretraining process.
We probe checkpoints taken from throughout XLM-R pretraining, using a suite of linguistic tasks.
Our analysis shows that the model achieves high in-language performance early on, with lower-level linguistic skills acquired before more complex ones.
arXiv Detail & Related papers (2022-05-24T03:35:00Z) - Language Models are Few-shot Multilingual Learners [66.11011385895195]
We evaluate the multilingual skills of the GPT and T5 models in conducting multi-class classification on non-English languages.
We show that, given a few English examples as context, pre-trained language models can predict not only English test samples but also non-English ones.
arXiv Detail & Related papers (2021-09-16T03:08:22Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
We generate language representation from multilingual pre-trained models and conduct linguistic analysis.
We cluster all the target languages into multiple groups and name each group as a representation sprachbund.
Experiments are conducted on cross-lingual benchmarks and significant improvements are achieved compared to strong baselines.
arXiv Detail & Related papers (2021-09-01T09:32:06Z) - Improving the Lexical Ability of Pretrained Language Models for
Unsupervised Neural Machine Translation [127.81351683335143]
Cross-lingual pretraining requires models to align the lexical- and high-level representations of the two languages.
Previous research has shown that this is because the representations are not sufficiently aligned.
In this paper, we enhance the bilingual masked language model pretraining with lexical-level information by using type-level cross-lingual subword embeddings.
arXiv Detail & Related papers (2021-03-18T21:17:58Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
Massively multilingual language models such as multilingual BERT (mBERT) and XLM-R offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks.
Due to their limited capacity and large differences in pretraining data, there is a profound performance gap between resource-rich and resource-poor target languages.
We propose novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts.
arXiv Detail & Related papers (2020-12-31T11:37:28Z) - Cross-lingual Spoken Language Understanding with Regularized
Representation Alignment [71.53159402053392]
We propose a regularization approach to align word-level and sentence-level representations across languages without any external resource.
Experiments on the cross-lingual spoken language understanding task show that our model outperforms current state-of-the-art methods in both few-shot and zero-shot scenarios.
arXiv Detail & Related papers (2020-09-30T08:56:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.