What does really matter in image goal navigation?
- URL: http://arxiv.org/abs/2507.01667v1
- Date: Wed, 02 Jul 2025 12:50:26 GMT
- Title: What does really matter in image goal navigation?
- Authors: Gianluca Monaci, Philippe Weinzaepfel, Christian Wolf,
- Abstract summary: We study whether this task can be efficiently solved with end-to-end training of full agents with RL.<n>A positive answer would have impact beyond Embodied AI.
- Score: 21.23421707462711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image goal navigation requires two different skills: firstly, core navigation skills, including the detection of free space and obstacles, and taking decisions based on an internal representation; and secondly, computing directional information by comparing visual observations to the goal image. Current state-of-the-art methods either rely on dedicated image-matching, or pre-training of computer vision modules on relative pose estimation. In this paper, we study whether this task can be efficiently solved with end-to-end training of full agents with RL, as has been claimed by recent work. A positive answer would have impact beyond Embodied AI and allow training of relative pose estimation from reward for navigation alone. In a large study we investigate the effect of architectural choices like late fusion, channel stacking, space-to-depth projections and cross-attention, and their role in the emergence of relative pose estimators from navigation training. We show that the success of recent methods is influenced up to a certain extent by simulator settings, leading to shortcuts in simulation. However, we also show that these capabilities can be transferred to more realistic setting, up to some extend. We also find evidence for correlations between navigation performance and probed (emerging) relative pose estimation performance, an important sub skill.
Related papers
- Transformers for Image-Goal Navigation [0.0]
We present a generative Transformer based model that jointly models image goals, camera observations and the robot's past actions to predict future actions.
Our model demonstrates capability in capturing and associating visual information across long time horizons, helping in effective navigation.
arXiv Detail & Related papers (2024-05-23T03:01:32Z) - Aligning Knowledge Graph with Visual Perception for Object-goal Navigation [16.32780793344835]
We propose the Aligning Knowledge Graph with Visual Perception (AKGVP) method for object-goal navigation.
Our approach introduces continuous modeling of the hierarchical scene architecture and leverages visual-language pre-training to align natural language description with visual perception.
The integration of a continuous knowledge graph architecture and multimodal feature alignment empowers the navigator with a remarkable zero-shot navigation capability.
arXiv Detail & Related papers (2024-02-29T06:31:18Z) - Learning Navigational Visual Representations with Semantic Map
Supervision [85.91625020847358]
We propose a navigational-specific visual representation learning method by contrasting the agent's egocentric views and semantic maps.
Ego$2$-Map learning transfers the compact and rich information from a map, such as objects, structure and transition, to the agent's egocentric representations for navigation.
arXiv Detail & Related papers (2023-07-23T14:01:05Z) - How To Not Train Your Dragon: Training-free Embodied Object Goal
Navigation with Semantic Frontiers [94.46825166907831]
We present a training-free solution to tackle the object goal navigation problem in Embodied AI.
Our method builds a structured scene representation based on the classic visual simultaneous localization and mapping (V-SLAM) framework.
Our method propagates semantics on the scene graphs based on language priors and scene statistics to introduce semantic knowledge to the geometric frontiers.
arXiv Detail & Related papers (2023-05-26T13:38:33Z) - Navigating to Objects in the Real World [76.1517654037993]
We present a large-scale empirical study of semantic visual navigation methods comparing methods from classical, modular, and end-to-end learning approaches.
We find that modular learning works well in the real world, attaining a 90% success rate.
In contrast, end-to-end learning does not, dropping from 77% simulation to 23% real-world success rate due to a large image domain gap between simulation and reality.
arXiv Detail & Related papers (2022-12-02T01:10:47Z) - Last-Mile Embodied Visual Navigation [31.622495628224403]
We propose SLING to improve the performance of image-goal navigation systems.
We focus on last-mile navigation and leverage the underlying geometric structure of the problem with neural descriptors.
On a standardized image-goal navigation benchmark, we improve performance across policies, scenes, and episode complexity, raising the state-of-the-art from 45% to 55% success rate.
arXiv Detail & Related papers (2022-11-21T18:59:58Z) - Towards self-attention based visual navigation in the real world [0.0]
Vision guided navigation requires processing complex visual information to inform task-orientated decisions.
Deep Reinforcement Learning agents trained in simulation often exhibit unsatisfactory results when deployed in the real-world.
This is the first demonstration of a self-attention based agent successfully trained in navigating a 3D action space, using less than 4000 parameters.
arXiv Detail & Related papers (2022-09-15T04:51:42Z) - Image-based Navigation in Real-World Environments via Multiple Mid-level
Representations: Fusion Models, Benchmark and Efficient Evaluation [13.207579081178716]
In recent learning-based navigation approaches, the scene understanding and navigation abilities of the agent are achieved simultaneously.
Unfortunately, even if simulators represent an efficient tool to train navigation policies, the resulting models often fail when transferred into the real world.
One possible solution is to provide the navigation model with mid-level visual representations containing important domain-invariant properties of the scene.
arXiv Detail & Related papers (2022-02-02T15:00:44Z) - PONI: Potential Functions for ObjectGoal Navigation with
Interaction-free Learning [125.22462763376993]
We propose Potential functions for ObjectGoal Navigation with Interaction-free learning (PONI)
PONI disentangles the skills of where to look?' for an object and how to navigate to (x, y)?'
arXiv Detail & Related papers (2022-01-25T01:07:32Z) - Explore before Moving: A Feasible Path Estimation and Memory Recalling
Framework for Embodied Navigation [117.26891277593205]
We focus on the navigation and solve the problem of existing navigation algorithms lacking experience and common sense.
Inspired by the human ability to think twice before moving and conceive several feasible paths to seek a goal in unfamiliar scenes, we present a route planning method named Path Estimation and Memory Recalling framework.
We show strong experimental results of PEMR on the EmbodiedQA navigation task.
arXiv Detail & Related papers (2021-10-16T13:30:55Z) - Deep Learning for Embodied Vision Navigation: A Survey [108.13766213265069]
"Embodied visual navigation" problem requires an agent to navigate in a 3D environment mainly rely on its first-person observation.
This paper attempts to establish an outline of the current works in the field of embodied visual navigation by providing a comprehensive literature survey.
arXiv Detail & Related papers (2021-07-07T12:09:04Z) - Rapid Exploration for Open-World Navigation with Latent Goal Models [78.45339342966196]
We describe a robotic learning system for autonomous exploration and navigation in diverse, open-world environments.
At the core of our method is a learned latent variable model of distances and actions, along with a non-parametric topological memory of images.
We use an information bottleneck to regularize the learned policy, giving us (i) a compact visual representation of goals, (ii) improved generalization capabilities, and (iii) a mechanism for sampling feasible goals for exploration.
arXiv Detail & Related papers (2021-04-12T23:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.