Blending Supervised and Reinforcement Fine-Tuning with Prefix Sampling
- URL: http://arxiv.org/abs/2507.01679v1
- Date: Wed, 02 Jul 2025 13:04:09 GMT
- Title: Blending Supervised and Reinforcement Fine-Tuning with Prefix Sampling
- Authors: Zeyu Huang, Tianhao Cheng, Zihan Qiu, Zili Wang, Yinghui Xu, Edoardo M. Ponti, Ivan Titov,
- Abstract summary: Prefix-RFT is a hybrid approach that synergizes learning from both demonstration and exploration.<n>It not only surpasses the performance of standalone SFT and RFT but also outperforms parallel mixed-policy RFT methods.
- Score: 35.64557242726578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing post-training techniques for large language models are broadly categorized into Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT). Each paradigm presents a distinct trade-off: SFT excels at mimicking demonstration data but can lead to problematic generalization as a form of behavior cloning. Conversely, RFT can significantly enhance a model's performance but is prone to learn unexpected behaviors, and its performance is highly sensitive to the initial policy. In this paper, we propose a unified view of these methods and introduce Prefix-RFT, a hybrid approach that synergizes learning from both demonstration and exploration. Using mathematical reasoning problems as a testbed, we empirically demonstrate that Prefix-RFT is both simple and effective. It not only surpasses the performance of standalone SFT and RFT but also outperforms parallel mixed-policy RFT methods. A key advantage is its seamless integration into existing open-source frameworks, requiring only minimal modifications to the standard RFT pipeline. Our analysis highlights the complementary nature of SFT and RFT, and validates that Prefix-RFT effectively harmonizes these two learning paradigms. Furthermore, ablation studies confirm the method's robustness to variations in the quality and quantity of demonstration data. We hope this work offers a new perspective on LLM post-training, suggesting that a unified paradigm that judiciously integrates demonstration and exploration could be a promising direction for future research.
Related papers
- On the Generalization of SFT: A Reinforcement Learning Perspective with Reward Rectification [50.30835290642069]
We present a simple yet theoretically motivated improvement to Supervised Fine-Tuning (SFT) for the Large Language Model (LLM)<n>We reveal that standard SFT gradients implicitly encode a problematic reward structure that may severely restrict the generalization capabilities of model.<n>We propose Dynamic Fine-Tuning (DFT), stabilizing gradient updates for each token by dynamically rescaling the objective function with the probability of this token.
arXiv Detail & Related papers (2025-08-07T17:59:04Z) - Reinforcement Fine-Tuning Naturally Mitigates Forgetting in Continual Post-Training [23.99424961055015]
This paper presents a comparative analysis of two core post-training paradigms: supervised fine-tuning (SFT) and reinforcement fine-tuning (RFT)<n>Our experiments are conducted on a benchmark comprising seven diverse multimodal tasks.
arXiv Detail & Related papers (2025-07-07T18:17:06Z) - Reinforcement Fine-Tuning Enables MLLMs Learning Novel Tasks Stably [80.36077974826865]
Post-training algorithms such as Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT) are widely used to adapt multimodal large language models to downstream tasks.<n>We study the behavior of SFT and RFT on an open-source multimodal model, Qwen2.5-VL.<n>Our experiments reveal a sharp trade-off: SFT enables rapid task acquisition but leads to catastrophic forgetting, whereas RFT learns more slowly on novel tasks but maintains prior knowledge.
arXiv Detail & Related papers (2025-06-30T04:15:01Z) - SRFT: A Single-Stage Method with Supervised and Reinforcement Fine-Tuning for Reasoning [20.442971494407896]
Large language models (LLMs) have achieved remarkable progress in reasoning tasks, yet the optimal integration of Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) remains a fundamental challenge.<n>We propose Supervised Reinforcement Fine-Tuning (SRFT), a single-stage method that unifies both fine-tuning paradigms through entropy-aware weighting mechanisms.<n>Extensive experiments show that SRFT achieves 59.1% average accuracy, outperforming zero-RL methods by 9.0% on five mathematical reasoning benchmarks and 10.9% on three out-of-distribution benchmarks.
arXiv Detail & Related papers (2025-06-24T16:31:37Z) - Implicit Reward as the Bridge: A Unified View of SFT and DPO Connections [65.36449542323277]
We present a unified theoretical framework bridgingSupervised Fine-Tuning (SFT) and preference learning in Large Language Model (LLM) post-training.<n>We propose a simple yet effective learning rate reduction approach that yields significant performance improvements.
arXiv Detail & Related papers (2025-06-15T05:42:29Z) - UFT: Unifying Supervised and Reinforcement Fine-Tuning [21.195897792629548]
We propose Unified Fine-Tuning (UFT), a novel post-training paradigm that unifies SFT and RFT into a single, integrated process.<n>UFT enables the model to effectively explore solutions while incorporating informative supervision signals.<n>We theoretically prove that UFT breaks RFT's inherent exponential sample complexity bottleneck.
arXiv Detail & Related papers (2025-05-22T17:53:57Z) - Discriminative Finetuning of Generative Large Language Models without Reward Models and Human Preference Data [73.04828796123581]
Supervised fine-tuning (SFT) has become a crucial step for aligning pretrained large language models (LLMs)<n>We introduce Discriminative Fine-Tuning (DFT), an improved variant of SFT, which mitigates the burden of collecting human-labeled preference data.<n>Our contributions include: (i) a discriminative probabilistic framework for fine-tuning LLMs by explicitly modeling the discriminative likelihood of an answer among all possible outputs given an input; (ii) efficient algorithms to optimize this discriminative likelihood; and (iii) extensive experiments demonstrating DFT's effectiveness
arXiv Detail & Related papers (2025-02-25T22:38:55Z) - Refining Salience-Aware Sparse Fine-Tuning Strategies for Language Models [14.68920095399595]
sparsity-based PEFT (SPEFT) introduces trainable sparse adaptations to the weight matrices in the model.<n>We conduct the first systematic evaluation of salience metrics for SPEFT, inspired by zero-cost NAS proxies.<n>We compare static and dynamic masking strategies, finding that static masking, which predetermines non-zero entries before training, delivers efficiency without sacrificing performance.
arXiv Detail & Related papers (2024-12-18T04:14:35Z) - Bridging SFT and DPO for Diffusion Model Alignment with Self-Sampling Preference Optimization [67.8738082040299]
Self-Sampling Preference Optimization (SSPO) is a new alignment method for post-training reinforcement learning.<n>SSPO eliminates the need for paired data and reward models while retaining the training stability of SFT.<n>SSPO surpasses all previous approaches on the text-to-image benchmarks and demonstrates outstanding performance on the text-to-video benchmarks.
arXiv Detail & Related papers (2024-10-07T17:56:53Z) - Understanding Fine-tuning in Approximate Unlearning: A Theoretical Perspective [39.958103832214135]
Fine-tuning (FT) methods have become one of the fundamental approaches for approximating unlearning.<n>We present the first theoretical analysis of FT methods for machine unlearning within a linear regression framework.<n>We propose a novel Retention-Based Masking (RBM) strategy that constructs a weight saliency map based on the remaining dataset.
arXiv Detail & Related papers (2024-10-04T18:01:52Z) - Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
We propose to leverage an Inverse Reinforcement Learning (IRL) technique to simultaneously build an reward model and a policy model.
We show that the proposed algorithms converge to the stationary solutions of the IRL problem.
Our results indicate that it is beneficial to leverage reward learning throughout the entire alignment process.
arXiv Detail & Related papers (2024-05-28T07:11:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.