Uncertainty-Aware Complex Scientific Table Data Extraction
- URL: http://arxiv.org/abs/2507.02009v2
- Date: Tue, 08 Jul 2025 23:08:38 GMT
- Title: Uncertainty-Aware Complex Scientific Table Data Extraction
- Authors: Kehinde Ajayi, Yi He, Jian Wu,
- Abstract summary: Table structure recognition (TSR) and optical character recognition (OCR) play crucial roles in extracting structured data from tables in scientific documents.<n>Existing extraction frameworks built on top of TSR and OCR often fail to quantify the uncertainties of extracted results.<n>We propose a framework that performs uncertainty-aware data extraction for complex scientific tables, built on conformal prediction.
- Score: 6.913734410452428
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Table structure recognition (TSR) and optical character recognition (OCR) play crucial roles in extracting structured data from tables in scientific documents. However, existing extraction frameworks built on top of TSR and OCR methods often fail to quantify the uncertainties of extracted results. To obtain highly accurate data for scientific domains, all extracted data must be manually verified, which can be time-consuming and labor-intensive. We propose a framework that performs uncertainty-aware data extraction for complex scientific tables, built on conformal prediction, a model-agnostic method for uncertainty quantification (UQ). We explored various uncertainty scoring methods to aggregate the uncertainties introduced by TSR and OCR. We rigorously evaluated the framework using a standard benchmark and an in-house dataset consisting of complex scientific tables in six scientific domains. The results demonstrate the effectiveness of using UQ for extraction error detection, and by manually verifying only 47% of extraction results, the data quality can be improved by 30%. Our work quantitatively demonstrates the role of UQ with the potential of improving the efficiency in the human-machine cooperation process to obtain scientifically usable data from complex tables in scientific documents. All code and data are available on GitHub at https://github.com/lamps-lab/TSR-OCR-UQ/tree/main.
Related papers
- Efficient Conformance Checking of Rich Data-Aware Declare Specifications (Extended) [49.46686813437884]
We show that it is possible to compute data-aware optimal alignments in a rich setting with general data types and data conditions.<n>This is achieved by carefully combining the two best-known approaches to deal with control flow and data dependencies.
arXiv Detail & Related papers (2025-06-30T10:16:21Z) - Ensuring Reliability of Curated EHR-Derived Data: The Validation of Accuracy for LLM/ML-Extracted Information and Data (VALID) Framework [0.0]
We propose a comprehensive framework for evaluating the quality of clinical data extracted by large language models (LLMs)<n>The framework integrates variable-level performance benchmarking against expert human abstraction, automated verification checks for internal consistency and plausibility, and replication analyses.<n>This multidimensional approach enables the identification of variables most in need of improvement, systematic detection of latent errors, and confirmation of dataset fitness-for-purpose in real-world research.
arXiv Detail & Related papers (2025-06-09T20:59:16Z) - Divide-Then-Align: Honest Alignment based on the Knowledge Boundary of RAG [51.120170062795566]
We propose Divide-Then-Align (DTA) to endow RAG systems with the ability to respond with "I don't know" when the query is out of the knowledge boundary.<n>DTA balances accuracy with appropriate abstention, enhancing the reliability and trustworthiness of retrieval-augmented systems.
arXiv Detail & Related papers (2025-05-27T08:21:21Z) - Large Language Models and Synthetic Data for Monitoring Dataset Mentions in Research Papers [0.0]
This paper presents a machine learning framework that automates dataset mention detection across research domains.<n>We employ zero-shot extraction from research papers, an LLM-as-a-Judge for quality assessment, and a reasoning agent for refinement to generate a weakly supervised synthetic dataset.<n>At inference, a ModernBERT-based classifier efficiently filters dataset mentions, reducing computational overhead while maintaining high recall.
arXiv Detail & Related papers (2025-02-14T16:16:02Z) - Efficient Multi-Agent System Training with Data Influence-Oriented Tree Search [59.75749613951193]
We propose Data Influence-oriented Tree Search (DITS) to guide both tree search and data selection.<n>By leveraging influence scores, we effectively identify the most impactful data for system improvement.<n>We derive influence score estimation methods tailored for non-differentiable metrics.
arXiv Detail & Related papers (2025-02-02T23:20:16Z) - Discovering physical laws with parallel combinatorial tree search [57.05912962368898]
Symbolic regression plays a crucial role in scientific research thanks to its capability of discovering concise and interpretable mathematical expressions from data.<n>Existing algorithms have faced a critical bottleneck of accuracy and efficiency over a decade.<n>We introduce a parallel tree search (PCTS) model to efficiently distill generic mathematical expressions from limited data.
arXiv Detail & Related papers (2024-07-05T10:41:15Z) - Data Collaboration Analysis applied to Compound Datasets and the
Introduction of Projection data to Non-IID settings [6.037276428689637]
Federated learning has been applied to compound datasets to increase their prediction accuracy while safeguarding potentially proprietary information.
We propose an alternative method of distributed machine learning to chemical compound data from open sources, called data collaboration analysis (DCPd)
DCPd exhibited a negligible decline in classification accuracy in experiments with different degrees of label bias.
arXiv Detail & Related papers (2023-08-01T04:37:08Z) - GAN-based Tabular Data Generator for Constructing Synopsis in
Approximate Query Processing: Challenges and Solutions [0.0]
Approximate Query Processing (AQP) is a technique for providing approximate answers to aggregate queries based on a summary of the data (synopsis)
This study explores the novel utilization of Generative Adversarial Networks (GANs) in the generation of tabular data that can be employed in AQP for synopsis construction.
Our findings demonstrate that advanced GAN variations exhibit a promising capacity to generate high-fidelity synopses, potentially transforming the efficiency and effectiveness of AQP in data-driven systems.
arXiv Detail & Related papers (2022-12-18T05:11:04Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
We propose a causally-aware imputation algorithm (MIRACLE) for missing data.
MIRACLE iteratively refines the imputation of a baseline by simultaneously modeling the missingness generating mechanism.
We conduct extensive experiments on synthetic and a variety of publicly available datasets to show that MIRACLE is able to consistently improve imputation.
arXiv Detail & Related papers (2021-11-04T22:38:18Z) - Deep Transformer Networks for Time Series Classification: The NPP Safety
Case [59.20947681019466]
An advanced temporal neural network referred to as the Transformer is used within a supervised learning fashion to model the time-dependent NPP simulation data.
The Transformer can learn the characteristics of the sequential data and yield promising performance with approximately 99% classification accuracy on the testing dataset.
arXiv Detail & Related papers (2021-04-09T14:26:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.