GeoAda: Efficiently Finetune Geometric Diffusion Models with Equivariant Adapters
- URL: http://arxiv.org/abs/2507.02085v1
- Date: Wed, 02 Jul 2025 18:44:03 GMT
- Title: GeoAda: Efficiently Finetune Geometric Diffusion Models with Equivariant Adapters
- Authors: Wanjia Zhao, Jiaqi Han, Siyi Gu, Mingjian Jiang, James Zou, Stefano Ermon,
- Abstract summary: We propose an SE(3)-equivariant adapter framework ( GeoAda) that enables flexible and parameter-efficient fine-tuning for controlled generative tasks.<n>GeoAda preserves the model's geometric consistency while mitigating overfitting and catastrophic forgetting.<n>We demonstrate the wide applicability of GeoAda across diverse geometric control types, including frame control, global control, subgraph control, and a broad range of application domains.
- Score: 61.51810815162003
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Geometric diffusion models have shown remarkable success in molecular dynamics and structure generation. However, efficiently fine-tuning them for downstream tasks with varying geometric controls remains underexplored. In this work, we propose an SE(3)-equivariant adapter framework ( GeoAda) that enables flexible and parameter-efficient fine-tuning for controlled generative tasks without modifying the original model architecture. GeoAda introduces a structured adapter design: control signals are first encoded through coupling operators, then processed by a trainable copy of selected pretrained model layers, and finally projected back via decoupling operators followed by an equivariant zero-initialized convolution. By fine-tuning only these lightweight adapter modules, GeoAda preserves the model's geometric consistency while mitigating overfitting and catastrophic forgetting. We theoretically prove that the proposed adapters maintain SE(3)-equivariance, ensuring that the geometric inductive biases of the pretrained diffusion model remain intact during adaptation. We demonstrate the wide applicability of GeoAda across diverse geometric control types, including frame control, global control, subgraph control, and a broad range of application domains such as particle dynamics, molecular dynamics, human motion prediction, and molecule generation. Empirical results show that GeoAda achieves state-of-the-art fine-tuning performance while preserving original task accuracy, whereas other baselines experience significant performance degradation due to overfitting and catastrophic forgetting.
Related papers
- GAGrasp: Geometric Algebra Diffusion for Dexterous Grasping [3.9108453320793326]
We propose GAGrasp, a novel framework for dexterous grasp generation.<n>By encoding the SE(3) symmetry constraint directly into the architecture, our method improves data and parameter efficiency.<n>We incorporate a differentiable physics-informed refinement layer, which ensures that generated grasps are physically plausible and stable.
arXiv Detail & Related papers (2025-03-06T06:00:55Z) - Bridging Geometric States via Geometric Diffusion Bridge [79.60212414973002]
We introduce the Geometric Diffusion Bridge (GDB), a novel generative modeling framework that accurately bridges initial and target geometric states.
GDB employs an equivariant diffusion bridge derived by a modified version of Doob's $h$-transform for connecting geometric states.
We show that GDB surpasses existing state-of-the-art approaches, opening up a new pathway for accurately bridging geometric states.
arXiv Detail & Related papers (2024-10-31T17:59:53Z) - Geometric Trajectory Diffusion Models [58.853975433383326]
Generative models have shown great promise in generating 3D geometric systems.
Existing approaches only operate on static structures, neglecting the fact that physical systems are always dynamic in nature.
We propose geometric trajectory diffusion models (GeoTDM), the first diffusion model for modeling the temporal distribution of 3D geometric trajectories.
arXiv Detail & Related papers (2024-10-16T20:36:41Z) - Aero-Nef: Neural Fields for Rapid Aircraft Aerodynamics Simulations [1.1932047172700866]
This paper presents a methodology to learn surrogate models of steady state fluid dynamics simulations on meshed domains.
The proposed models can be applied directly to unstructured domains for different flow conditions.
Remarkably, the method can perform inference five order of magnitude faster than the high fidelity solver on the RANS transonic airfoil dataset.
arXiv Detail & Related papers (2024-07-29T11:48:44Z) - GGAvatar: Geometric Adjustment of Gaussian Head Avatar [6.58321368492053]
GGAvatar is a novel 3D avatar representation designed to robustly model dynamic head avatars with complex identities.
GGAvatar can produce high-fidelity renderings, outperforming state-of-the-art methods in visual quality and quantitative metrics.
arXiv Detail & Related papers (2024-05-20T12:54:57Z) - Learning Modulated Transformation in GANs [69.95217723100413]
We equip the generator in generative adversarial networks (GANs) with a plug-and-play module, termed as modulated transformation module (MTM)
MTM predicts spatial offsets under the control of latent codes, based on which the convolution operation can be applied at variable locations.
It is noteworthy that towards human generation on the challenging TaiChi dataset, we improve the FID of StyleGAN3 from 21.36 to 13.60, demonstrating the efficacy of learning modulated geometry transformation.
arXiv Detail & Related papers (2023-08-29T17:51:22Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
We propose two deep learning models that fully automate shape parameterization for aerodynamic shape optimization.
Both models are optimized to parameterize via deep geometric learning to embed human prior knowledge into learned geometric patterns.
We perform shape optimization experiments on 2D airfoils and discuss the applicable scenarios for the two models.
arXiv Detail & Related papers (2023-05-03T13:45:40Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.