Generating Large Semi-Synthetic Graphs of Any Size
- URL: http://arxiv.org/abs/2507.02166v1
- Date: Wed, 02 Jul 2025 21:46:28 GMT
- Title: Generating Large Semi-Synthetic Graphs of Any Size
- Authors: Rodrigo Tuna, Carlos Soares,
- Abstract summary: Graph generation is an important area in network science.<n>Recent advancements in deep learning have enabled data-driven methods to learn and generate graphs.<n>We propose Latent Graph Sampling Generation (LGSG) to generate graphs of varying sizes without retraining.
- Score: 0.4419843514606336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph generation is an important area in network science. Traditional approaches focus on replicating specific properties of real-world graphs, such as small diameters or power-law degree distributions. Recent advancements in deep learning, particularly with Graph Neural Networks, have enabled data-driven methods to learn and generate graphs without relying on predefined structural properties. Despite these advances, current models are limited by their reliance on node IDs, which restricts their ability to generate graphs larger than the input graph and ignores node attributes. To address these challenges, we propose Latent Graph Sampling Generation (LGSG), a novel framework that leverages diffusion models and node embeddings to generate graphs of varying sizes without retraining. The framework eliminates the dependency on node IDs and captures the distribution of node embeddings and subgraph structures, enabling scalable and flexible graph generation. Experimental results show that LGSG performs on par with baseline models for standard metrics while outperforming them in overlooked ones, such as the tendency of nodes to form clusters. Additionally, it maintains consistent structural characteristics across graphs of different sizes, demonstrating robustness and scalability.
Related papers
- GSAT: Graph Structure Attention Networks [6.546071689641213]
Graph Neural Networks (GNNs) have emerged as a powerful tool for processing data represented in graph structures.<n> structural representation of each node that encodes rich local topological information in the neighbourhood of nodes is an important type of feature that is often overlooked in the modeling.<n>In the present paper, we leverage these structural information that are modeled by anonymous random walks (ARWs) and introduce graph structure attention network (GSAT) to integrate the original attribute and the structural representation.
arXiv Detail & Related papers (2025-05-27T14:54:08Z) - Scalable Graph Generative Modeling via Substructure Sequences [37.64864614356634]
We introduce Generative Graph Pattern Machine (G$2$PM), a generative Transformer pre-training framework for graphs.<n>G$2$PM represents graph instances as sequences of substructures, and employs generative pre-training over the sequences to learn generalizable, transferable representations.<n>On the ogbn-arxiv benchmark, G$2$PM continues to improve with model sizes up to 60M parameters, outperforming prior generative approaches that plateau at significantly smaller scales.
arXiv Detail & Related papers (2025-05-22T02:16:34Z) - Beyond Message Passing: Neural Graph Pattern Machine [50.78679002846741]
We introduce the Neural Graph Pattern Machine (GPM), a novel framework that bypasses message passing by learning directly from graph substructures.<n>GPM efficiently extracts, encodes, and prioritizes task-relevant graph patterns, offering greater expressivity and improved ability to capture long-range dependencies.
arXiv Detail & Related papers (2025-01-30T20:37:47Z) - Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)<n>This framework provides a standardized setting to evaluate GNNs across diverse datasets.<n>We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - Graph Size-imbalanced Learning with Energy-guided Structural Smoothing [13.636616140250908]
Real-world graphs usually suffer from the size-imbalanced problem in the multi-graph classification.<n>Recent studies find that off-the-shelf Graph Neural Networks (GNNs) would compromise model performance under the long-tailed settings.<n>We propose a novel energy-based size-imbalanced learning framework named textbfSIMBA, which smooths the features between head and tail graphs.
arXiv Detail & Related papers (2024-12-23T14:06:49Z) - OpenGraph: Towards Open Graph Foundation Models [20.401374302429627]
Graph Neural Networks (GNNs) have emerged as promising techniques for encoding structural information.
Key challenge remains: the difficulty of generalizing to unseen graph data with different properties.
We propose a novel graph foundation model, called OpenGraph, to address this challenge.
arXiv Detail & Related papers (2024-03-02T08:05:03Z) - GraphEdit: Large Language Models for Graph Structure Learning [14.16155596597421]
Graph Structure Learning (GSL) focuses on capturing intrinsic dependencies and interactions among nodes in graph-structured data.<n>Existing GSL methods heavily depend on explicit graph structural information as supervision signals.<n>We propose GraphEdit, an approach that leverages large language models (LLMs) to learn complex node relationships in graph-structured data.
arXiv Detail & Related papers (2024-02-23T08:29:42Z) - GraphMaker: Can Diffusion Models Generate Large Attributed Graphs? [7.330479039715941]
Large-scale graphs with node attributes are increasingly common in various real-world applications.
Traditional graph generation methods are limited in their capacity to handle these complex structures.
This paper introduces a novel diffusion model, GraphMaker, specifically designed for generating large attributed graphs.
arXiv Detail & Related papers (2023-10-20T22:12:46Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Graph Generative Model for Benchmarking Graph Neural Networks [73.11514658000547]
We introduce a novel graph generative model that learns and reproduces the distribution of real-world graphs in a privacy-controlled way.
Our model can successfully generate privacy-controlled, synthetic substitutes of large-scale real-world graphs that can be effectively used to benchmark GNN models.
arXiv Detail & Related papers (2022-07-10T06:42:02Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
We present textbfGraph textbfModel textbfInversion attack (GraphMI), which aims to extract private graph data of the training graph by inverting GNN.
Specifically, we propose a projected gradient module to tackle the discreteness of graph edges while preserving the sparsity and smoothness of graph features.
We design a graph auto-encoder module to efficiently exploit graph topology, node attributes, and target model parameters for edge inference.
arXiv Detail & Related papers (2021-06-05T07:07:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.