Towards Bio-Inspired Robotic Trajectory Planning via Self-Supervised RNN
- URL: http://arxiv.org/abs/2507.02171v1
- Date: Wed, 02 Jul 2025 22:05:58 GMT
- Title: Towards Bio-Inspired Robotic Trajectory Planning via Self-Supervised RNN
- Authors: Miroslav Cibula, Kristína Malinovská, Matthias Kerzel,
- Abstract summary: Trajectory planning in robotics is understood as generating a sequence of joint configurations that lead a robotic agent from an initial state to the desired final state.<n>Recent advances demonstrate that trajectory planning can also be performed by supervised sequence learning of trajectories.<n>We propose a cognitively inspired self-supervised learning scheme based on a recurrent architecture for building a trajectory model.
- Score: 1.474723404975345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trajectory planning in robotics is understood as generating a sequence of joint configurations that will lead a robotic agent, or its manipulator, from an initial state to the desired final state, thus completing a manipulation task while considering constraints like robot kinematics and the environment. Typically, this is achieved via sampling-based planners, which are computationally intensive. Recent advances demonstrate that trajectory planning can also be performed by supervised sequence learning of trajectories, often requiring only a single or fixed number of passes through a neural architecture, thus ensuring a bounded computation time. Such fully supervised approaches, however, perform imitation learning; they do not learn based on whether the trajectories can successfully reach a goal, but try to reproduce observed trajectories. In our work, we build on this approach and propose a cognitively inspired self-supervised learning scheme based on a recurrent architecture for building a trajectory model. We evaluate the feasibility of the proposed method on a task of kinematic planning for a robotic arm. The results suggest that the model is able to learn to generate trajectories only using given paired forward and inverse kinematics models, and indicate that this novel method could facilitate planning for more complex manipulation tasks requiring adaptive solutions.
Related papers
- Action Flow Matching for Continual Robot Learning [57.698553219660376]
Continual learning in robotics seeks systems that can constantly adapt to changing environments and tasks.<n>We introduce a generative framework leveraging flow matching for online robot dynamics model alignment.<n>We find that by transforming the actions themselves rather than exploring with a misaligned model, the robot collects informative data more efficiently.
arXiv Detail & Related papers (2025-04-25T16:26:15Z) - Closed-Loop Long-Horizon Robotic Planning via Equilibrium Sequence Modeling [21.45039811922009]
We advocate a self-refining scheme that iteratively refines a draft plan until an equilibrium is reached.<n>A nested equilibrium sequence modeling procedure is devised for efficient closed-loop planning.<n>Our method is evaluated on the VirtualHome-Env benchmark, showing advanced performance with improved scaling w.r.t. inference-time computation.
arXiv Detail & Related papers (2024-10-02T11:42:49Z) - Integration of Reinforcement Learning Based Behavior Planning With
Sampling Based Motion Planning for Automated Driving [0.5801044612920815]
We propose a method to employ a trained deep reinforcement learning policy for dedicated high-level behavior planning.
To the best of our knowledge, this work is the first to apply deep reinforcement learning in this manner.
arXiv Detail & Related papers (2023-04-17T13:49:55Z) - Fast Kinodynamic Planning on the Constraint Manifold with Deep Neural
Networks [29.239926645660823]
This paper introduces a novel learning-to-plan framework that exploits the concept of constraint manifold.
Our approach generates plans satisfying an arbitrary set of constraints and computes them in a short constant time, namely the inference time of a neural network.
We validate our approach on two simulated tasks and in a demanding real-world scenario, where we use a Kuka LBR Iiwa 14 robotic arm to perform the hitting movement in robotic Air Hockey.
arXiv Detail & Related papers (2023-01-11T06:54:11Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
We propose to leverage a sequential bias to learn control policies for complex robotic tasks using a single demonstration.
We show that DCIL-II can solve with unprecedented sample efficiency some challenging simulated tasks such as humanoid locomotion and stand-up.
arXiv Detail & Related papers (2022-11-09T10:28:40Z) - Reaching Through Latent Space: From Joint Statistics to Path Planning in
Manipulation [26.38185646091712]
We present a novel approach to path planning for robotic manipulators.
Paths are produced via iterative optimisation in the latent space of a generative model of robot poses.
Our models are trained in a task-agnostic manner on randomly sampled robot poses.
arXiv Detail & Related papers (2022-10-21T07:25:21Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Silver-Bullet-3D at ManiSkill 2021: Learning-from-Demonstrations and
Heuristic Rule-based Methods for Object Manipulation [118.27432851053335]
This paper presents an overview and comparative analysis of our systems designed for the following two tracks in SAPIEN ManiSkill Challenge 2021: No Interaction Track.
The No Interaction track targets for learning policies from pre-collected demonstration trajectories.
In this track, we design a Heuristic Rule-based Method (HRM) to trigger high-quality object manipulation by decomposing the task into a series of sub-tasks.
For each sub-task, the simple rule-based controlling strategies are adopted to predict actions that can be applied to robotic arms.
arXiv Detail & Related papers (2022-06-13T16:20:42Z) - Learning Neuro-Symbolic Relational Transition Models for Bilevel
Planning [61.37385221479233]
In this work, we take a step toward bridging the gap between model-based reinforcement learning and integrated symbolic-geometric robotic planning.
NSRTs have both symbolic and neural components, enabling a bilevel planning scheme where symbolic AI planning in an outer loop guides continuous planning with neural models in an inner loop.
NSRTs can be learned after only tens or hundreds of training episodes, and then used for fast planning in new tasks that require up to 60 actions to reach the goal.
arXiv Detail & Related papers (2021-05-28T19:37:18Z) - Structured Prediction for CRiSP Inverse Kinematics Learning with
Misspecified Robot Models [39.513301957826435]
We introduce a structured prediction algorithm that combines a data-driven strategy with a forward kinematics function.
The proposed approach ensures that predicted joint configurations are well within the robot's constraints.
arXiv Detail & Related papers (2021-02-25T15:39:33Z) - Thinking While Moving: Deep Reinforcement Learning with Concurrent
Control [122.49572467292293]
We study reinforcement learning in settings where sampling an action from the policy must be done concurrently with the time evolution of the controlled system.
Much like a person or an animal, the robot must think and move at the same time, deciding on its next action before the previous one has completed.
arXiv Detail & Related papers (2020-04-13T17:49:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.