Perception Activator: An intuitive and portable framework for brain cognitive exploration
- URL: http://arxiv.org/abs/2507.02311v1
- Date: Thu, 03 Jul 2025 04:46:48 GMT
- Title: Perception Activator: An intuitive and portable framework for brain cognitive exploration
- Authors: Le Xu, Qi Zhang, Qixian Zhang, Hongyun Zhang, Duoqian Miao, Cairong Zhao,
- Abstract summary: We develop an experimental framework that uses fMRI representations as intervention conditions.<n>We compare both downstream performance and intermediate feature changes on object detection and instance segmentation tasks with and without fMRI information.<n>Our results prove that fMRI contains rich multi-object semantic cues and coarse spatial localization information-elements that current models have yet to fully exploit or integrate.
- Score: 19.851643249367108
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in brain-vision decoding have driven significant progress, reconstructing with high fidelity perceived visual stimuli from neural activity, e.g., functional magnetic resonance imaging (fMRI), in the human visual cortex. Most existing methods decode the brain signal using a two-level strategy, i.e., pixel-level and semantic-level. However, these methods rely heavily on low-level pixel alignment yet lack sufficient and fine-grained semantic alignment, resulting in obvious reconstruction distortions of multiple semantic objects. To better understand the brain's visual perception patterns and how current decoding models process semantic objects, we have developed an experimental framework that uses fMRI representations as intervention conditions. By injecting these representations into multi-scale image features via cross-attention, we compare both downstream performance and intermediate feature changes on object detection and instance segmentation tasks with and without fMRI information. Our results demonstrate that incorporating fMRI signals enhances the accuracy of downstream detection and segmentation, confirming that fMRI contains rich multi-object semantic cues and coarse spatial localization information-elements that current models have yet to fully exploit or integrate.
Related papers
- LLM4Brain: Training a Large Language Model for Brain Video Understanding [9.294352205183726]
We introduce an LLM-based approach for reconstructing visual-semantic information from fMRI signals elicited by video stimuli.
We employ fine-tuning techniques on an fMRI encoder equipped with adaptors to transform brain responses into latent representations aligned with the video stimuli.
In particular, we integrate self-supervised domain adaptation methods to enhance the alignment between visual-semantic information and brain responses.
arXiv Detail & Related papers (2024-09-26T15:57:08Z) - Brain-Streams: fMRI-to-Image Reconstruction with Multi-modal Guidance [3.74142789780782]
We show how modern LDMs incorporate multi-modal guidance for structurally and semantically plausible image generations.
Brain-Streams maps fMRI signals from brain regions to appropriate embeddings.
We validate the reconstruction ability of Brain-Streams both quantitatively and qualitatively on a real fMRI dataset.
arXiv Detail & Related papers (2024-09-18T16:19:57Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - See Through Their Minds: Learning Transferable Neural Representation from Cross-Subject fMRI [32.40827290083577]
Deciphering visual content from functional Magnetic Resonance Imaging (fMRI) helps illuminate the human vision system.
Previous approaches primarily employ subject-specific models, sensitive to training sample size.
We propose shallow subject-specific adapters to map cross-subject fMRI data into unified representations.
During training, we leverage both visual and textual supervision for multi-modal brain decoding.
arXiv Detail & Related papers (2024-03-11T01:18:49Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Controllable Mind Visual Diffusion Model [58.83896307930354]
Brain signal visualization has emerged as an active research area, serving as a critical interface between the human visual system and computer vision models.
We propose a novel approach, referred to as Controllable Mind Visual Model Diffusion (CMVDM)
CMVDM extracts semantic and silhouette information from fMRI data using attribute alignment and assistant networks.
We then leverage a control model to fully exploit the extracted information for image synthesis, resulting in generated images that closely resemble the visual stimuli in terms of semantics and silhouette.
arXiv Detail & Related papers (2023-05-17T11:36:40Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
We introduce a unified framework that addresses both fMRI decoding and encoding.
Our model concurrently recovers visual stimuli from fMRI signals and predicts brain activity from images within a unified framework.
arXiv Detail & Related papers (2023-03-26T14:14:58Z) - BrainCLIP: Bridging Brain and Visual-Linguistic Representation Via CLIP
for Generic Natural Visual Stimulus Decoding [51.911473457195555]
BrainCLIP is a task-agnostic fMRI-based brain decoding model.
It bridges the modality gap between brain activity, image, and text.
BrainCLIP can reconstruct visual stimuli with high semantic fidelity.
arXiv Detail & Related papers (2023-02-25T03:28:54Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - Facial Image Reconstruction from Functional Magnetic Resonance Imaging
via GAN Inversion with Improved Attribute Consistency [5.705640492618758]
We propose a new framework to reconstruct facial images from fMRI data.
The proposed framework accomplishes two goals: (1) reconstructing clear facial images from fMRI data and (2) maintaining the consistency of semantic characteristics.
arXiv Detail & Related papers (2022-07-03T11:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.