UVLM: Benchmarking Video Language Model for Underwater World Understanding
- URL: http://arxiv.org/abs/2507.02373v1
- Date: Thu, 03 Jul 2025 07:08:38 GMT
- Title: UVLM: Benchmarking Video Language Model for Underwater World Understanding
- Authors: Xizhe Xue, Yang Zhou, Dawei Yan, Ying Li, Haokui Zhang, Rong Xiao,
- Abstract summary: We introduce UVLM, a benchmark for underwater video observation.<n> dataset includes 419 classes of marine animals, and various static plants and terrains.<n>Experiments on two representative VidLMs demonstrate that fine-tuning VidLMs on UVLM significantly improves underwater world understanding.
- Score: 11.475921633970977
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recently, the remarkable success of large language models (LLMs) has achieved a profound impact on the field of artificial intelligence. Numerous advanced works based on LLMs have been proposed and applied in various scenarios. Among them, video language models (VidLMs) are particularly widely used. However, existing works primarily focus on terrestrial scenarios, overlooking the highly demanding application needs of underwater observation. To overcome this gap, we introduce UVLM, an under water observation benchmark which is build through a collaborative approach combining human expertise and AI models. To ensure data quality, we have conducted in-depth considerations from multiple perspectives. First, to address the unique challenges of underwater environments, we selected videos that represent typical underwater challenges including light variations, water turbidity, and diverse viewing angles to construct the dataset. Second, to ensure data diversity, the dataset covers a wide range of frame rates, resolutions, 419 classes of marine animals, and various static plants and terrains. Next, for task diversity, we adopted a structured design where observation targets are categorized into two major classes: biological and environmental. Each category includes content observation and change/action observation, totaling 20 distinct task types. Finally, we designed several challenging evaluation metrics to enable quantitative comparison and analysis of different methods. Experiments on two representative VidLMs demonstrate that fine-tuning VidLMs on UVLM significantly improves underwater world understanding while also showing potential for slight improvements on existing in-air VidLM benchmarks, such as VideoMME and Perception text. The dataset and prompt engineering will be released publicly.
Related papers
- HV-MMBench: Benchmarking MLLMs for Human-Centric Video Understanding [79.06209664703258]
Multimodal Large Language Models (MLLMs) have demonstrated significant advances in visual understanding tasks involving both images and videos.<n>Existing human-centric benchmarks predominantly emphasize video generation quality and action recognition, while overlooking essential perceptual and cognitive abilities required in human-centered scenarios.<n>We propose a rigorously curated benchmark designed to provide a more holistic evaluation of MLLMs in human-centric video understanding.
arXiv Detail & Related papers (2025-07-07T11:52:24Z) - AquaticCLIP: A Vision-Language Foundation Model for Underwater Scene Analysis [40.27548815196493]
We introduce AquaticCLIP, a novel contrastive language-image pre-training model tailored for aquatic scene understanding.<n> AquaticCLIP presents a new unsupervised learning framework that aligns images and texts in aquatic environments.<n>Our model sets a new benchmark for vision-language applications in underwater environments.
arXiv Detail & Related papers (2025-02-03T19:56:16Z) - HumanVBench: Exploring Human-Centric Video Understanding Capabilities of MLLMs with Synthetic Benchmark Data [55.739633494946204]
We present HumanVBench, an innovative benchmark meticulously crafted to bridge gaps in the evaluation of video MLLMs.<n>HumanVBench comprises 16 carefully designed tasks that explore two primary dimensions: inner emotion and outer manifestations, spanning static and dynamic, basic and complex, as well as single-modal and cross-modal aspects.<n>A comprehensive evaluation across 22 SOTA video MLLMs reveals notable limitations in current performance, especially in cross-modal and emotion perception.
arXiv Detail & Related papers (2024-12-23T13:45:56Z) - On Domain-Adaptive Post-Training for Multimodal Large Language Models [72.67107077850939]
This paper systematically investigates domain adaptation of MLLMs via post-training.<n>We focus on data synthesis, training pipeline, and task evaluation.<n>We conduct experiments in high-impact domains such as biomedicine, food, and remote sensing.
arXiv Detail & Related papers (2024-11-29T18:42:28Z) - DivScene: Benchmarking LVLMs for Object Navigation with Diverse Scenes and Objects [84.73092715537364]
In this paper, we study a new task of navigating to diverse target objects in a large number of scene types.
We build an end-to-end embodied agent, NatVLM, by fine-tuning a Large Vision Language Model (LVLM) through imitation learning.
Our agent achieves a success rate that surpasses GPT-4o by over 20%.
arXiv Detail & Related papers (2024-10-03T17:49:28Z) - Img-Diff: Contrastive Data Synthesis for Multimodal Large Language Models [49.439311430360284]
We introduce a novel data synthesis method inspired by contrastive learning and image difference captioning.<n>Our key idea involves challenging the model to discern both matching and distinct elements.<n>We leverage this generated dataset to fine-tune state-of-the-art (SOTA) MLLMs.
arXiv Detail & Related papers (2024-08-08T17:10:16Z) - Hypergraph Multi-modal Large Language Model: Exploiting EEG and Eye-tracking Modalities to Evaluate Heterogeneous Responses for Video Understanding [25.4933695784155]
Understanding of video creativity and content often varies among individuals, with differences in focal points and cognitive levels across different ages, experiences, and genders.
To bridge the gap to real-world applications, we introduce a large-scale Subjective Response Indicators for Advertisement Videos dataset.
We developed tasks and protocols to analyze and evaluate the extent of cognitive understanding of video content among different users.
arXiv Detail & Related papers (2024-07-11T03:00:26Z) - MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
We present a comprehensive dataset compiled from Nature Communications articles covering 72 scientific fields.<n>We evaluated 19 proprietary and open-source models on two benchmark tasks, figure captioning and multiple-choice, and conducted human expert annotation.<n>Fine-tuning Qwen2-VL-7B with our task-specific data achieved better performance than GPT-4o and even human experts in multiple-choice evaluations.
arXiv Detail & Related papers (2024-07-06T00:40:53Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [61.143381152739046]
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach.<n>Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations.<n>We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes.
arXiv Detail & Related papers (2024-06-24T17:59:42Z) - End-To-End Underwater Video Enhancement: Dataset and Model [6.153714458213646]
Underwater video enhancement (UVE) aims to improve the visibility and frame quality of underwater videos.
Existing methods primarily focus on developing image enhancement algorithms to enhance each frame independently.
This study represents the first comprehensive exploration of UVE to our knowledge.
arXiv Detail & Related papers (2024-03-18T06:24:46Z) - ASOD60K: Audio-Induced Salient Object Detection in Panoramic Videos [79.05486554647918]
We propose PV-SOD, a new task that aims to segment salient objects from panoramic videos.
In contrast to existing fixation-level or object-level saliency detection tasks, we focus on multi-modal salient object detection (SOD)
We collect the first large-scale dataset, named ASOD60K, which contains 4K-resolution video frames annotated with a six-level hierarchy.
arXiv Detail & Related papers (2021-07-24T15:14:20Z) - SVAM: Saliency-guided Visual Attention Modeling by Autonomous Underwater
Robots [16.242924916178282]
This paper presents a holistic approach to saliency-guided visual attention modeling (SVAM) for use by autonomous underwater robots.
Our proposed model, named SVAM-Net, integrates deep visual features at various scales and semantics for effective salient object detection (SOD) in natural underwater images.
arXiv Detail & Related papers (2020-11-12T08:17:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.