Linear Attention with Global Context: A Multipole Attention Mechanism for Vision and Physics
- URL: http://arxiv.org/abs/2507.02748v1
- Date: Thu, 03 Jul 2025 16:05:26 GMT
- Title: Linear Attention with Global Context: A Multipole Attention Mechanism for Vision and Physics
- Authors: Alex Colagrande, Paul Caillon, Eva Feillet, Alexandre Allauzen,
- Abstract summary: We introduce the Multipole Attention Neural Operator (MANO), which computes attention in a distance-based multiscale fashion.<n>We show that MANO rivals state-of-the-art models such as ViT and Swin Transformer, while reducing runtime and peak memory usage by orders of magnitude.
- Score: 42.41787036246253
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Transformers have become the de facto standard for a wide range of tasks, from image classification to physics simulations. Despite their impressive performance, the quadratic complexity of standard Transformers in both memory and time with respect to the input length makes them impractical for processing high-resolution inputs. Therefore, several variants have been proposed, the most successful relying on patchification, downsampling, or coarsening techniques, often at the cost of losing the finest-scale details. In this work, we take a different approach. Inspired by state-of-the-art techniques in $n$-body numerical simulations, we cast attention as an interaction problem between grid points. We introduce the Multipole Attention Neural Operator (MANO), which computes attention in a distance-based multiscale fashion. MANO maintains, in each attention head, a global receptive field and achieves linear time and memory complexity with respect to the number of grid points. Empirical results on image classification and Darcy flows demonstrate that MANO rivals state-of-the-art models such as ViT and Swin Transformer, while reducing runtime and peak memory usage by orders of magnitude. We open source our code for reproducibility at https://github.com/AlexColagrande/MANO.
Related papers
- Robust representations of oil wells' intervals via sparse attention
mechanism [2.604557228169423]
We introduce the class of efficient Transformers named Regularized Transformers (Reguformers)
The focus in our experiments is on oil&gas data, namely, well logs.
To evaluate our models for such problems, we work with an industry-scale open dataset consisting of well logs of more than 20 wells.
arXiv Detail & Related papers (2022-12-29T09:56:33Z) - Vision Transformers: From Semantic Segmentation to Dense Prediction [139.15562023284187]
We explore the global context learning potentials of vision transformers (ViTs) for dense visual prediction.
Our motivation is that through learning global context at full receptive field layer by layer, ViTs may capture stronger long-range dependency information.
We formulate a family of Hierarchical Local-Global (HLG) Transformers, characterized by local attention within windows and global-attention across windows in a pyramidal architecture.
arXiv Detail & Related papers (2022-07-19T15:49:35Z) - MAT: Mask-Aware Transformer for Large Hole Image Inpainting [79.67039090195527]
We present a novel model for large hole inpainting, which unifies the merits of transformers and convolutions.
Experiments demonstrate the state-of-the-art performance of the new model on multiple benchmark datasets.
arXiv Detail & Related papers (2022-03-29T06:36:17Z) - Learned Queries for Efficient Local Attention [11.123272845092611]
Self-attention mechanism in vision transformers suffers from high latency and inefficient memory utilization.
We propose a new shift-invariant local attention layer, called query and attend (QnA), that aggregates the input locally in an overlapping manner.
We show improvements in speed and memory complexity while achieving comparable accuracy with state-of-the-art models.
arXiv Detail & Related papers (2021-12-21T18:52:33Z) - Shunted Self-Attention via Multi-Scale Token Aggregation [124.16925784748601]
Recent Vision Transformer(ViT) models have demonstrated encouraging results across various computer vision tasks.
We propose shunted self-attention(SSA) that allows ViTs to model the attentions at hybrid scales per attention layer.
The SSA-based transformer achieves 84.0% Top-1 accuracy and outperforms the state-of-the-art Focal Transformer on ImageNet.
arXiv Detail & Related papers (2021-11-30T08:08:47Z) - XCiT: Cross-Covariance Image Transformers [73.33400159139708]
We propose a "transposed" version of self-attention that operates across feature channels rather than tokens.
The resulting cross-covariance attention (XCA) has linear complexity in the number of tokens, and allows efficient processing of high-resolution images.
arXiv Detail & Related papers (2021-06-17T17:33:35Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
Less attention vIsion Transformer builds upon the fact that convolutions, fully-connected layers, and self-attentions have almost equivalent mathematical expressions for processing image patch sequences.
The proposed LIT achieves promising performance on image recognition tasks, including image classification, object detection and instance segmentation.
arXiv Detail & Related papers (2021-05-29T05:26:07Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
We propose TransDepth, an architecture which benefits from both convolutional neural networks and transformers.
This is the first paper which applies transformers into pixel-wise prediction problems involving continuous labels.
arXiv Detail & Related papers (2021-03-22T18:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.