Grounding Intelligence in Movement
- URL: http://arxiv.org/abs/2507.02771v1
- Date: Thu, 03 Jul 2025 16:34:34 GMT
- Title: Grounding Intelligence in Movement
- Authors: Melanie Segado, Felipe Parodi, Jordan K. Matelsky, Michael L. Platt, Eva B. Dyer, Konrad P. Kording,
- Abstract summary: Recent advances in machine learning have dramatically improved our ability to model language, vision, and other high-dimensional data.<n>Across neuroscience, medicine, robotics, and ethology, movement is essential for interpreting behavior, predicting intent, and enabling interaction.<n>We argue that movement should be treated as a primary modeling target for AI.
- Score: 0.9895793818721335
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advances in machine learning have dramatically improved our ability to model language, vision, and other high-dimensional data, yet they continue to struggle with one of the most fundamental aspects of biological systems: movement. Across neuroscience, medicine, robotics, and ethology, movement is essential for interpreting behavior, predicting intent, and enabling interaction. Despite its core significance in our intelligence, movement is often treated as an afterthought rather than as a rich and structured modality in its own right. This reflects a deeper fragmentation in how movement data is collected and modeled, often constrained by task-specific goals and domain-specific assumptions. But movement is not domain-bound. It reflects shared physical constraints, conserved morphological structures, and purposeful dynamics that cut across species and settings. We argue that movement should be treated as a primary modeling target for AI. It is inherently structured and grounded in embodiment and physics. This structure, often allowing for compact, lower-dimensional representations (e.g., pose), makes it more interpretable and computationally tractable to model than raw, high-dimensional sensory inputs. Developing models that can learn from and generalize across diverse movement data will not only advance core capabilities in generative modeling and control, but also create a shared foundation for understanding behavior across biological and artificial systems. Movement is not just an outcome, it is a window into how intelligent systems engage with the world.
Related papers
- Human sensory-musculoskeletal modeling and control of whole-body movements [10.253693485647444]
Building dynamic models of the sensory-musculoskeletal system is essential for understanding movement control and investigating human behaviours.<n>We report a human sensory-musculoskeletal model, termed SMS-Human, that integrates precise anatomical representations of bones, joints, and muscle-tendon units.
arXiv Detail & Related papers (2025-05-29T16:42:08Z) - Diffgrasp: Whole-Body Grasping Synthesis Guided by Object Motion Using a Diffusion Model [25.00532805042292]
We propose a simple yet effective framework that jointly models the relationship between the body, hands, and the given object motion sequences.<n>We introduce novel contact-aware losses and incorporate a data-driven, carefully designed guidance.<n> Experimental results demonstrate that our approach outperforms the state-of-the-art method and generates plausible whole-body motion sequences.
arXiv Detail & Related papers (2024-12-30T02:21:43Z) - PhyGrasp: Generalizing Robotic Grasping with Physics-informed Large
Multimodal Models [58.33913881592706]
Humans can easily apply their intuitive physics to grasp skillfully and change grasps efficiently, even for objects they have never seen before.
This work delves into infusing such physical commonsense reasoning into robotic manipulation.
We introduce PhyGrasp, a multimodal large model that leverages inputs from two modalities: natural language and 3D point clouds.
arXiv Detail & Related papers (2024-02-26T18:57:52Z) - Dynamic planning in hierarchical active inference [0.0]
We refer to the ability of the human brain to infer and impose motor trajectories related to cognitive decisions.
This study focuses on the topic of dynamic planning in active inference.
arXiv Detail & Related papers (2024-02-18T17:32:53Z) - Binding Dynamics in Rotating Features [72.80071820194273]
We propose an alternative "cosine binding" mechanism, which explicitly computes the alignment between features and adjusts weights accordingly.
This allows us to draw direct connections to self-attention and biological neural processes, and to shed light on the fundamental dynamics for object-centric representations to emerge in Rotating Features.
arXiv Detail & Related papers (2024-02-08T12:31:08Z) - GRIP: Generating Interaction Poses Using Spatial Cues and Latent Consistency [57.9920824261925]
Hands are dexterous and highly versatile manipulators that are central to how humans interact with objects and their environment.
modeling realistic hand-object interactions is critical for applications in computer graphics, computer vision, and mixed reality.
GRIP is a learning-based method that takes as input the 3D motion of the body and the object, and synthesizes realistic motion for both hands before, during, and after object interaction.
arXiv Detail & Related papers (2023-08-22T17:59:51Z) - Persistent-Transient Duality: A Multi-mechanism Approach for Modeling
Human-Object Interaction [58.67761673662716]
Humans are highly adaptable, swiftly switching between different modes to handle different tasks, situations and contexts.
In Human-object interaction (HOI) activities, these modes can be attributed to two mechanisms: (1) the large-scale consistent plan for the whole activity and (2) the small-scale children interactive actions that start and end along the timeline.
This work proposes to model two concurrent mechanisms that jointly control human motion.
arXiv Detail & Related papers (2023-07-24T12:21:33Z) - Modelling Human Visual Motion Processing with Trainable Motion Energy
Sensing and a Self-attention Network [1.9458156037869137]
We propose an image-computable model of human motion perception by bridging the gap between biological and computer vision models.
This model architecture aims to capture the computations in V1-MT, the core structure for motion perception in the biological visual system.
In silico neurophysiology reveals that our model's unit responses are similar to mammalian neural recordings regarding motion pooling and speed tuning.
arXiv Detail & Related papers (2023-05-16T04:16:07Z) - MoDi: Unconditional Motion Synthesis from Diverse Data [51.676055380546494]
We present MoDi, an unconditional generative model that synthesizes diverse motions.
Our model is trained in a completely unsupervised setting from a diverse, unstructured and unlabeled motion dataset.
We show that despite the lack of any structure in the dataset, the latent space can be semantically clustered.
arXiv Detail & Related papers (2022-06-16T09:06:25Z) - Full-Body Visual Self-Modeling of Robot Morphologies [29.76701883250049]
Internal computational models of physical bodies are fundamental to the ability of robots and animals alike to plan and control their actions.
Recent progress in fully data-driven self-modeling has enabled machines to learn their own forward kinematics directly from task-agnostic interaction data.
Here, we propose that instead of directly modeling forward-kinematics, a more useful form of self-modeling is one that could answer space occupancy queries.
arXiv Detail & Related papers (2021-11-11T18:58:07Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
We develop a novel foundation model pre-trained with huge multimodal (visual and textual) data.
We show that state-of-the-art results can be obtained on a wide range of downstream tasks.
arXiv Detail & Related papers (2021-10-27T12:25:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.