Self-Correction Bench: Revealing and Addressing the Self-Correction Blind Spot in LLMs
- URL: http://arxiv.org/abs/2507.02778v1
- Date: Thu, 03 Jul 2025 16:41:30 GMT
- Title: Self-Correction Bench: Revealing and Addressing the Self-Correction Blind Spot in LLMs
- Authors: Ken Tsui,
- Abstract summary: Self-correction is an important capability for large language models (LLMs)<n>While LLMs can identify error in user input, they exhibit a systematic 'Self-Correction Blind Spot'<n>Testing 14 models, we find an average 64.5% blind spot rate.<n>Remarkably, simply appending "Wait" reduces blind spots by 89.3%, suggesting that the capability exists but requires activation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although large language models (LLMs) have become transformative, they still make mistakes and can explore unproductive reasoning paths. Self-correction is an important capability for a trustworthy LLM, particularly an autoregressive LLM. While LLMs can identify error in user input, they exhibit a systematic 'Self-Correction Blind Spot' - failing to correct identical error in their own outputs. To systematically study this phenomenon, we introduce Self-Correction Bench, a systematic framework to measure this phenomenon through controlled error injection at three complexity levels. Testing 14 models, we find an average 64.5% blind spot rate. We find multiple evidences that this limitation relates to training data composition: human training demonstrations predominantly show error-free responses rather than error-correction sequences, unlike RL-trained models that learn error correction through outcome feedback. Remarkably, simply appending "Wait" reduces blind spots by 89.3%, suggesting that the capability exists but requires activation. Our work highlights a critical limitation in current LLMs and offers potential avenues for improving their reliability and trustworthiness.
Related papers
- Don't Take the Premise for Granted: Evaluating the Premise Critique Ability of Large Language Models [11.379764847748378]
Large language models (LLMs) often uncritically accept flawed or contradictory premises, leading to inefficient reasoning and unreliable outputs.<n>This emphasizes the significance of possessing the textbfPremise Critique Ability for LLMs, defined as the capacity to proactively identify and articulate errors in input premises.<n>We introduce the textbfPremise Critique Bench (PCBench), designed by incorporating four error types across three difficulty levels, paired with multi-faceted evaluation metrics.
arXiv Detail & Related papers (2025-05-29T17:49:44Z) - Factual Self-Awareness in Language Models: Representation, Robustness, and Scaling [56.26834106704781]
Factual incorrectness in generated content is one of the primary concerns in ubiquitous deployment of large language models (LLMs)<n>We provide evidence supporting the presence of LLMs' internal compass that dictate the correctness of factual recall at the time of generation.<n>Scaling experiments across model sizes and training dynamics highlight that self-awareness emerges rapidly during training and peaks in intermediate layers.
arXiv Detail & Related papers (2025-05-27T16:24:02Z) - Too Consistent to Detect: A Study of Self-Consistent Errors in LLMs [61.12688072239607]
This work formally defines self-consistent errors and evaluates mainstream detection methods on them.<n>All four types of detection methshods significantly struggle to detect self-consistent errors.<n>Motivated by the observation that self-consistent errors often differ across LLMs, we propose a simple but effective cross-model probe method.
arXiv Detail & Related papers (2025-05-23T09:18:56Z) - S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
We introduce S$2$R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference.<n>Our results demonstrate that Qwen2.5-math-7B achieves an accuracy improvement from 51.0% to 81.6%, outperforming models trained on an equivalent amount of long-CoT distilled data.
arXiv Detail & Related papers (2025-02-18T13:40:22Z) - Know Your Mistakes: Towards Preventing Overreliance on Task-Oriented Conversational AI Through Accountability Modeling [9.305763502526833]
We propose an accountability model for task-oriented dialogue agents to address user overreliance via friction turns.<n>Our empirical findings demonstrate that the proposed approach not only enables reliable estimation of AI agent errors but also guides the decoder in generating more accurate actions.
arXiv Detail & Related papers (2025-01-17T17:40:12Z) - ATTNChecker: Highly-Optimized Fault Tolerant Attention for Large Language Model Training [14.178223242134166]
Large Language Models (LLMs) have demonstrated remarkable performance in various natural language processing tasks.<n>LLMs are susceptible to faults, particularly in the attention mechanism, which is a critical component of transformer-based LLMs.<n>We propose ATTNChecker, the first Algorithm-Based Fault Tolerance (ABFT) technique tailored for the attention mechanism in LLMs.
arXiv Detail & Related papers (2024-10-15T15:52:45Z) - Training Language Models to Self-Correct via Reinforcement Learning [98.35197671595343]
Self-correction has been found to be largely ineffective in modern large language models (LLMs)
We develop a multi-turn online reinforcement learning approach, SCoRe, that significantly improves an LLM's self-correction ability using entirely self-generated data.
We find that SCoRe achieves state-of-the-art self-correction performance, improving the base models' self-correction by 15.6% and 9.1% respectively on MATH and HumanEval.
arXiv Detail & Related papers (2024-09-19T17:16:21Z) - AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models [95.09157454599605]
Large Language Models (LLMs) are becoming increasingly powerful, but they still exhibit significant but subtle weaknesses.<n>Traditional benchmarking approaches cannot thoroughly pinpoint specific model deficiencies.<n>We introduce a unified framework, AutoDetect, to automatically expose weaknesses in LLMs across various tasks.
arXiv Detail & Related papers (2024-06-24T15:16:45Z) - Large Language Models have Intrinsic Self-Correction Ability [18.79203446847577]
Large language models (LLMs) have attracted significant attention for their exceptional abilities in various natural language processing tasks.<n>One promising solution to improve the LLMs' performance is to ask LLMs to revise their answer after generation.<n>In intrinsic self-correction is considered a promising direction because it does not utilize external knowledge.
arXiv Detail & Related papers (2024-06-21T22:29:40Z) - SaySelf: Teaching LLMs to Express Confidence with Self-Reflective Rationales [29.33581578047835]
SaySelf is a training framework that teaches large language models to express more accurate fine-grained confidence estimates.
In addition, SaySelf directs LLMs to produce self-reflective rationales that clearly identify gaps in their parametric knowledge.
We show that the generated self-reflective rationales are reasonable and can further contribute to the calibration.
arXiv Detail & Related papers (2024-05-31T16:21:16Z) - Small Language Models Need Strong Verifiers to Self-Correct Reasoning [69.94251699982388]
Self-correction has emerged as a promising solution to boost the reasoning performance of large language models (LLMs)
This work explores whether small (= 13B) language models (LMs) have the ability of self-correction on reasoning tasks with minimal inputs from stronger LMs.
arXiv Detail & Related papers (2024-04-26T03:41:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.