Loki's Dance of Illusions: A Comprehensive Survey of Hallucination in Large Language Models
- URL: http://arxiv.org/abs/2507.02870v1
- Date: Fri, 06 Jun 2025 10:50:08 GMT
- Title: Loki's Dance of Illusions: A Comprehensive Survey of Hallucination in Large Language Models
- Authors: Chaozhuo Li, Pengbo Wang, Chenxu Wang, Litian Zhang, Zheng Liu, Qiwei Ye, Yuanbo Xu, Feiran Huang, Xi Zhang, Philip S. Yu,
- Abstract summary: Large language models (LLMs) sometimes produce information that appears factually accurate but is, in reality, fabricated.<n>The prevalence of these hallucinations can mislead users, affecting their judgments and decisions.<n>In sectors such as finance, law, and healthcare, such misinformation risks causing substantial economic losses, legal disputes, and health risks.
- Score: 46.71180299830997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Edgar Allan Poe noted, "Truth often lurks in the shadow of error," highlighting the deep complexity intrinsic to the interplay between truth and falsehood, notably under conditions of cognitive and informational asymmetry. This dynamic is strikingly evident in large language models (LLMs). Despite their impressive linguistic generation capabilities, LLMs sometimes produce information that appears factually accurate but is, in reality, fabricated, an issue often referred to as 'hallucinations'. The prevalence of these hallucinations can mislead users, affecting their judgments and decisions. In sectors such as finance, law, and healthcare, such misinformation risks causing substantial economic losses, legal disputes, and health risks, with wide-ranging consequences.In our research, we have methodically categorized, analyzed the causes, detection methods, and solutions related to LLM hallucinations. Our efforts have particularly focused on understanding the roots of hallucinations and evaluating the efficacy of current strategies in revealing the underlying logic, thereby paving the way for the development of innovative and potent approaches. By examining why certain measures are effective against hallucinations, our study aims to foster a comprehensive approach to tackling this issue within the domain of LLMs.
Related papers
- Triggering Hallucinations in LLMs: A Quantitative Study of Prompt-Induced Hallucination in Large Language Models [0.0]
Hallucinations in large language models (LLMs) present a growing challenge across real-world applications.<n>We propose a prompt-based framework to systematically trigger and quantify hallucination.
arXiv Detail & Related papers (2025-05-01T14:33:47Z) - Delusions of Large Language Models [62.43923767408462]
Large Language Models often generate factually incorrect but plausible outputs, known as hallucinations.<n>We identify a more insidious phenomenon, LLM delusion, defined as high belief hallucinations, incorrect outputs with abnormally high confidence, making them harder to detect and mitigate.
arXiv Detail & Related papers (2025-03-09T17:59:16Z) - Trust Me, I'm Wrong: High-Certainty Hallucinations in LLMs [45.13670875211498]
Large Language Models (LLMs) often generate outputs that lack grounding in real-world facts, a phenomenon known as hallucinations.<n>We show that models can hallucinate with high certainty even when they have the correct knowledge.
arXiv Detail & Related papers (2025-02-18T15:46:31Z) - Combating Multimodal LLM Hallucination via Bottom-Up Holistic Reasoning [151.4060202671114]
multimodal large language models (MLLMs) have shown unprecedented capabilities in advancing vision-language tasks.<n>This paper introduces a novel bottom-up reasoning framework to address hallucinations in MLLMs.<n>Our framework systematically addresses potential issues in both visual and textual inputs by verifying and integrating perception-level information with cognition-level commonsense knowledge.
arXiv Detail & Related papers (2024-12-15T09:10:46Z) - Redefining "Hallucination" in LLMs: Towards a psychology-informed
framework for mitigating misinformation [0.7826806223782052]
We propose a psychological taxonomy based on cognitive biases and other psychological phenomena.
By leveraging insights from how humans internally resolve similar challenges, we aim to develop strategies to mitigate hallucinations.
arXiv Detail & Related papers (2024-02-01T03:01:11Z) - The Dawn After the Dark: An Empirical Study on Factuality Hallucination
in Large Language Models [134.6697160940223]
hallucination poses great challenge to trustworthy and reliable deployment of large language models.
Three key questions should be well studied: how to detect hallucinations (detection), why do LLMs hallucinate (source), and what can be done to mitigate them.
This work presents a systematic empirical study on LLM hallucination, focused on the the three aspects of hallucination detection, source and mitigation.
arXiv Detail & Related papers (2024-01-06T12:40:45Z) - A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions [40.79317187623401]
The emergence of large language models (LLMs) has marked a significant breakthrough in natural language processing (NLP)
LLMs are prone to hallucination, generating plausible yet nonfactual content.
This phenomenon raises significant concerns over the reliability of LLMs in real-world information retrieval systems.
arXiv Detail & Related papers (2023-11-09T09:25:37Z) - Towards Mitigating Hallucination in Large Language Models via
Self-Reflection [63.2543947174318]
Large language models (LLMs) have shown promise for generative and knowledge-intensive tasks including question-answering (QA) tasks.
This paper analyses the phenomenon of hallucination in medical generative QA systems using widely adopted LLMs and datasets.
arXiv Detail & Related papers (2023-10-10T03:05:44Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks.
LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge.
arXiv Detail & Related papers (2023-09-03T16:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.