MolProphecy: Bridging Medicinal Chemists' Knowledge and Molecular Pre-Trained Models via a Multi-Modal Framework
- URL: http://arxiv.org/abs/2507.02932v1
- Date: Thu, 26 Jun 2025 12:51:59 GMT
- Title: MolProphecy: Bridging Medicinal Chemists' Knowledge and Molecular Pre-Trained Models via a Multi-Modal Framework
- Authors: Jianping Zhao, Qiong Zhou, Tian Wang, Yusi Fan, Qian Yang, Li Jiao, Chang Liu, Zhehao Guo, Qi Lu, Fengfeng Zhou, Ruochi Zhang,
- Abstract summary: MolProphecy is a framework to integrate chemists' domain knowledge into molecular property prediction models.<n>ChatGPT is a virtual chemist to simulate expert-level reasoning and decision-making.<n>MolProphecy outperforms state-of-the-art (SOTA) models on four benchmark datasets.
- Score: 21.677162643535826
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: MolProphecy is a human-in-the-loop (HITL) multi-modal framework designed to integrate chemists' domain knowledge into molecular property prediction models. While molecular pre-trained models have enabled significant gains in predictive accuracy, they often fail to capture the tacit, interpretive reasoning central to expert-driven molecular design. To address this, MolProphecy employs ChatGPT as a virtual chemist to simulate expert-level reasoning and decision-making. The generated chemist knowledge is embedded by the large language model (LLM) as a dedicated knowledge representation and then fused with graph-based molecular features through a gated cross-attention mechanism, enabling joint reasoning over human-derived and structural features. Evaluated on four benchmark datasets (FreeSolv, BACE, SIDER, and ClinTox), MolProphecy outperforms state-of-the-art (SOTA) models, achieving a 15.0 percent reduction in RMSE on FreeSolv and a 5.39 percent improvement in AUROC on BACE. Analysis reveals that chemist knowledge and structural features provide complementary contributions, improving both accuracy and interpretability. MolProphecy offers a practical and generalizable approach for collaborative drug discovery, with the flexibility to incorporate real chemist input in place of the current simulated proxy--without the need for model retraining. The implementation is publicly available at https://github.com/zhangruochi/MolProphecy.
Related papers
- Knowledge-aware contrastive heterogeneous molecular graph learning [77.94721384862699]
We propose a paradigm shift by encoding molecular graphs into Heterogeneous Molecular Graph Learning (KCHML)<n>KCHML conceptualizes molecules through three distinct graph views-molecular, elemental, and pharmacological-enhanced by heterogeneous molecular graphs and a dual message-passing mechanism.<n>This design offers a comprehensive representation for property prediction, as well as for downstream tasks such as drug-drug interaction (DDI) prediction.
arXiv Detail & Related papers (2025-02-17T11:53:58Z) - Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - MolTRES: Improving Chemical Language Representation Learning for Molecular Property Prediction [14.353313239109337]
MolTRES is a novel chemical language representation learning framework.
It incorporates generator-discriminator training, allowing the model to learn from more challenging examples.
Our model outperforms existing state-of-the-art models on popular molecular property prediction tasks.
arXiv Detail & Related papers (2024-07-09T01:14:28Z) - MoleculeCLA: Rethinking Molecular Benchmark via Computational Ligand-Target Binding Analysis [18.940529282539842]
We construct a large-scale and precise molecular representation dataset of approximately 140,000 small molecules.
Our dataset offers significant physicochemical interpretability to guide model development and design.
We believe this dataset will serve as a more accurate and reliable benchmark for molecular representation learning.
arXiv Detail & Related papers (2024-06-13T02:50:23Z) - Instruction Multi-Constraint Molecular Generation Using a Teacher-Student Large Language Model [49.64512917330373]
We introduce a multi-constraint molecular generation large language model, TSMMG, akin to a student.
To train TSMMG, we construct a large set of text-molecule pairs by extracting molecular knowledge from these 'teachers'
We experimentally show that TSMMG remarkably performs in generating molecules meeting complex, natural language-described property requirements.
arXiv Detail & Related papers (2024-03-20T02:15:55Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIG is a novel MultiModaL molecular pre-training framework for predicting molecular properties based on Image and Graph structures.
It amalgamates the strengths of both molecular representation forms.
It exhibits enhanced performance in downstream tasks pertaining to molecular property prediction within benchmark groups.
arXiv Detail & Related papers (2023-11-28T10:28:35Z) - MolCAP: Molecular Chemical reActivity pretraining and
prompted-finetuning enhanced molecular representation learning [3.179128580341411]
MolCAP is a graph pretraining Transformer based on chemical reactivity (IMR) knowledge with prompted finetuning.
Prompted by MolCAP, even basic graph neural networks are capable of achieving surprising performance that outperforms previous models.
arXiv Detail & Related papers (2023-06-13T13:48:06Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule Representations [68.32093648671496]
We introduce GODE, which accounts for the dual-level structure inherent in molecules.<n> Molecules possess an intrinsic graph structure and simultaneously function as nodes within a broader molecular knowledge graph.<n>By pre-training two GNNs on different graph structures, GODE effectively fuses molecular structures with their corresponding knowledge graph substructures.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - Domain-Agnostic Molecular Generation with Chemical Feedback [44.063584808910896]
MolGen is a pre-trained molecular language model tailored specifically for molecule generation.
It internalizes structural and grammatical insights through the reconstruction of over 100 million molecular SELFIES.
Our chemical feedback paradigm steers the model away from molecular hallucinations, ensuring alignment between the model's estimated probabilities and real-world chemical preferences.
arXiv Detail & Related papers (2023-01-26T17:52:56Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
We propose a novel paradigm of "pre-train, prompt, fine-tune" for molecular representation learning, named molecule continuous prompt tuning (MolCPT)
MolCPT defines a motif prompting function that uses the pre-trained model to project the standalone input into an expressive prompt.
Experiments on several benchmark datasets show that MolCPT efficiently generalizes pre-trained GNNs for molecular property prediction.
arXiv Detail & Related papers (2022-12-20T19:32:30Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
We present molecular embeddings obtained by training an efficient transformer encoder model, referred to as MoLFormer.
Experiments show that the learned molecular representation performs competitively, when compared to graph-based and fingerprint-based supervised learning baselines.
arXiv Detail & Related papers (2021-06-17T14:33:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.