CS-VLM: Compressed Sensing Attention for Efficient Vision-Language Representation Learning
- URL: http://arxiv.org/abs/2507.02957v1
- Date: Mon, 30 Jun 2025 02:11:20 GMT
- Title: CS-VLM: Compressed Sensing Attention for Efficient Vision-Language Representation Learning
- Authors: Andrew Kiruluta, Preethi Raju, Priscilla Burity,
- Abstract summary: We introduce the Compressed Sensing Attention Transformer (CSAT), a novel architecture that reimagines attention computation through the lens of compressed sensing.<n>CSAT exploits the inherent compressibility of both visual and textual representations especially evident in video, where temporal redundancy is high, and in language, where cross-modal grounding is often sparse.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-Language Models (vLLMs) have emerged as powerful architectures for joint reasoning over visual and textual inputs, enabling breakthroughs in image captioning, cross modal retrieval, and multimodal dialogue. However, as these models scale to longer video sequences and richer language descriptions, the quadratic complexity of the standard attention mechanism presents a fundamental computational bottleneck. This challenge is exacerbated in vLLMs, where attention must be computed not only within modalities but also across them, leading to prohibitive memory and latency costs. In this work, we introduce the Compressed Sensing Attention Transformer (CSAT), a novel architecture that reimagines attention computation through the lens of compressed sensing. By projecting high dimensional key and value representations into a lower-dimensional subspace via random measurement matrices and reconstructing the attention outputs using sparse recovery algorithms, CSAT significantly reduces attention complexity while maintaining semantic fidelity. Applied to vLLMs, CSAT exploits the inherent compressibility of both visual and textual representations especially evident in video, where temporal redundancy is high, and in language, where cross-modal grounding is often sparse. In contrast to LLMs, which must often model entangled symbolic dependencies, vLLMs benefit from structured sparsity in alignment and scene composition, making them particularly well-suited to compressed attention. We provide a formal mathematical treatment of CSAT, demonstrate its integration into vision language pipelines, and validate its performance on standard benchmarks, highlighting its promise as a scalable, interpretable, and resource efficient solution for next generation multimodal transformers.
Related papers
- Video-Level Language-Driven Video-Based Visible-Infrared Person Re-Identification [47.40091830500585]
Video-based Visible-basedInfrared Person Re-Identification (VVIReID) aims to match pedestrian sequences across modalities by extracting modality-in sequence-level features.<n>A framework, video-level language-driven VVI-ReID (VLD), consists of two core modules: inmodality language (IMLP) and spatialtemporal aggregation.
arXiv Detail & Related papers (2025-06-03T04:49:08Z) - Keyframe-oriented Vision Token Pruning: Enhancing Efficiency of Large Vision Language Models on Long-Form Video Processing [30.94114120434789]
We propose KVTP (Keyframe-oriented Vision Token MME), a novel framework that overcomes the token pruning and selection drawbacks.<n> KVTP effectively retains essential contextual information while significantly reducing redundant computation.
arXiv Detail & Related papers (2025-03-13T17:47:52Z) - Integrating Frequency-Domain Representations with Low-Rank Adaptation in Vision-Language Models [0.6715525121432597]
This research presents a novel vision language model (VLM) framework to enhance feature extraction, scalability, and efficiency.<n>We evaluate the proposed model on caption generation and Visual Question Answering (VQA) tasks using benchmark datasets with varying levels of Gaussian noise.<n>Our model provides more detailed and contextually relevant responses, particularly for real-world images captured by a RealSense camera mounted on an Unmanned Ground Vehicle (UGV)
arXiv Detail & Related papers (2025-03-08T01:22:10Z) - ContextFormer: Redefining Efficiency in Semantic Segmentation [48.81126061219231]
Convolutional methods, although capturing local dependencies well, struggle with long-range relationships.<n>Vision Transformers (ViTs) excel in global context capture but are hindered by high computational demands.<n>We propose ContextFormer, a hybrid framework leveraging the strengths of CNNs and ViTs in the bottleneck to balance efficiency, accuracy, and robustness for real-time semantic segmentation.
arXiv Detail & Related papers (2025-01-31T16:11:04Z) - Core Context Aware Transformers for Long Context Language Modeling [50.774702091154204]
We propose a plug-and-play Core Context Aware (CCA) Attention for efficient long-context modeling.<n>Our method automatically focuses and strengthens core context while diminishing redundancy during the learning process.<n>Our method is able to replace the self-attention module in existing Large Language Models with minimal fine-tuning cost.
arXiv Detail & Related papers (2024-12-17T01:54:08Z) - Towards Context-aware Convolutional Network for Image Restoration [5.319939908085759]
transformer-based algorithms and some attention-based convolutional neural networks (CNNs) have presented promising results on several image restoration tasks.<n>Existing convolutional residual building modules for IR encounter limited ability to map inputs into high-dimensional and non-linear feature spaces.<n>We propose a context-aware convolutional network (CCNet) with powerful learning ability for contextual high-dimensional mapping and abundant contextual information.
arXiv Detail & Related papers (2024-12-15T01:29:33Z) - Efficient Multi-modal Large Language Models via Visual Token Grouping [55.482198808206284]
High-resolution images and videos pose a barrier to their broader adoption.<n> compressing vision tokens in MLLMs has emerged as a promising approach to reduce inference costs.<n>We introduce VisToG, a novel grouping mechanism that leverages the capabilities of pre-trained vision encoders to group similar image segments.
arXiv Detail & Related papers (2024-11-26T09:36:02Z) - Anchor Attention, Small Cache: Code Generation with Large Language Models [15.94784908771546]
Current practices in NLP often use sparse attention which may, unfortunately, lead to substantial inaccuracies, or hallucinations, in code generation tasks.
We propose a novel approach, AnchorCoder, which features token-wise anchor attention designed to extract and compress contextual information.
It can consistently achieve a significant (at least 70%) reduction in KV cache requirements, while preserving the majority of model's performance.
arXiv Detail & Related papers (2024-11-11T02:47:05Z) - SOLO: A Single Transformer for Scalable Vision-Language Modeling [74.05173379908703]
We present SOLO, a single transformer for visiOn-Language mOdeling.<n>A unified single Transformer architecture, like SOLO, effectively addresses these scalability concerns in LVLMs.<n>In this paper, we introduce the first open-source training recipe for developing SOLO, an open-source 7B LVLM.
arXiv Detail & Related papers (2024-07-08T22:40:15Z) - Perceiver-VL: Efficient Vision-and-Language Modeling with Iterative
Latent Attention [100.81495948184649]
We present Perceiver-VL, a vision-and-language framework that efficiently handles high-dimensional multimodal inputs such as long videos and text.
Our framework scales with linear complexity, in contrast to the quadratic complexity of self-attention used in many state-of-the-art transformer-based models.
arXiv Detail & Related papers (2022-11-21T18:22:39Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUG is a new vision-language foundation model for both cross-modal understanding and generation.
It achieves state-of-the-art results on a wide range of vision-language downstream tasks, such as image captioning, image-text retrieval, visual grounding and visual question answering.
arXiv Detail & Related papers (2022-05-24T11:52:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.