A Novel Active Learning Approach to Label One Million Unknown Malware Variants
- URL: http://arxiv.org/abs/2507.02959v1
- Date: Mon, 30 Jun 2025 04:18:31 GMT
- Title: A Novel Active Learning Approach to Label One Million Unknown Malware Variants
- Authors: Ahmed Bensaoud, Jugal Kalita,
- Abstract summary: This paper proposes two novel active learning approaches to label one million malware examples.<n>The first model is Inception-VPCA combined with several support vector machine (SVM) algorithms.<n>The second model is Vision Transformer based Bayesian Neural Networks ViT-BNN.
- Score: 7.136205674624813
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active learning for classification seeks to reduce the cost of labeling samples by finding unlabeled examples about which the current model is least certain and sending them to an annotator/expert to label. Bayesian theory can provide a probabilistic view of deep neural network models by asserting a prior distribution over model parameters and estimating the uncertainties by posterior distribution over these parameters. This paper proposes two novel active learning approaches to label one million malware examples belonging to different unknown modern malware families. The first model is Inception-V4+PCA combined with several support vector machine (SVM) algorithms (UTSVM, PSVM, SVM-GSU, TBSVM). The second model is Vision Transformer based Bayesian Neural Networks ViT-BNN. Our proposed ViT-BNN is a state-of-the-art active learning approach that differs from current methods and can apply to any particular task. The experiments demonstrate that the ViT-BNN is more stable and robust in handling uncertainty.
Related papers
- Neural Lineage [56.34149480207817]
We introduce a novel task known as neural lineage detection, aiming at discovering lineage relationships between parent and child models.
For practical convenience, we introduce a learning-free approach, which integrates an approximation of the finetuning process into the neural network representation similarity metrics.
For the pursuit of accuracy, we introduce a learning-based lineage detector comprising encoders and a transformer detector.
arXiv Detail & Related papers (2024-06-17T01:11:53Z) - ScatterUQ: Interactive Uncertainty Visualizations for Multiclass Deep Learning Problems [0.0]
ScatterUQ is an interactive system that provides targeted visualizations to allow users to better understand model performance in context-driven uncertainty settings.
We demonstrate the effectiveness of ScatterUQ to explain model uncertainty for a multiclass image classification on a distance-aware neural network trained on Fashion-MNIST.
Our results indicate that the ScatterUQ system should scale to arbitrary, multiclass datasets.
arXiv Detail & Related papers (2023-08-08T21:17:03Z) - ProbVLM: Probabilistic Adapter for Frozen Vision-Language Models [69.50316788263433]
We propose ProbVLM, a probabilistic adapter that estimates probability distributions for the embeddings of pre-trained vision-language models.
We quantify the calibration of embedding uncertainties in retrieval tasks and show that ProbVLM outperforms other methods.
We present a novel technique for visualizing the embedding distributions using a large-scale pre-trained latent diffusion model.
arXiv Detail & Related papers (2023-07-01T18:16:06Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Fully differentiable model discovery [0.0]
We propose an approach by combining neural network based surrogates with Sparse Bayesian Learning.
Our work expands PINNs to various types of neural network architectures, and connects neural network-based surrogates to the rich field of Bayesian parameter inference.
arXiv Detail & Related papers (2021-06-09T08:11:23Z) - Open Set Recognition with Conditional Probabilistic Generative Models [51.40872765917125]
We propose Conditional Probabilistic Generative Models (CPGM) for open set recognition.
CPGM can detect unknown samples but also classify known classes by forcing different latent features to approximate conditional Gaussian distributions.
Experiment results on multiple benchmark datasets reveal that the proposed method significantly outperforms the baselines.
arXiv Detail & Related papers (2020-08-12T06:23:49Z) - CSI: Novelty Detection via Contrastive Learning on Distributionally
Shifted Instances [77.28192419848901]
We propose a simple, yet effective method named contrasting shifted instances (CSI)
In addition to contrasting a given sample with other instances as in conventional contrastive learning methods, our training scheme contrasts the sample with distributionally-shifted augmentations of itself.
Our experiments demonstrate the superiority of our method under various novelty detection scenarios.
arXiv Detail & Related papers (2020-07-16T08:32:56Z) - A Convolutional Deep Markov Model for Unsupervised Speech Representation
Learning [32.59760685342343]
Probabilistic Latent Variable Models provide an alternative to self-supervised learning approaches for linguistic representation learning from speech.
In this work, we propose ConvDMM, a Gaussian state-space model with non-linear emission and transition functions modelled by deep neural networks.
When trained on a large scale speech dataset (LibriSpeech), ConvDMM produces features that significantly outperform multiple self-supervised feature extracting methods.
arXiv Detail & Related papers (2020-06-03T21:50:20Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.