CLUES: Collaborative High-Quality Data Selection for LLMs via Training Dynamics
- URL: http://arxiv.org/abs/2507.03004v1
- Date: Wed, 02 Jul 2025 06:19:40 GMT
- Title: CLUES: Collaborative High-Quality Data Selection for LLMs via Training Dynamics
- Authors: Wanru Zhao, Hongxiang Fan, Shell Xu Hu, Wangchunshu Zhou, Bofan Chen, Nicholas D. Lane,
- Abstract summary: This paper proposes a novel data quality control technique based on the notion of data influence on the training dynamics of language models (LLMs)<n>We then leverage the influence of the training dynamics to select high-quality data from different private domains.<n> Experiments show that training on the high-quality data selected by our method can often outperform other data selection methods for collaborative fine-tuning of LLMs.
- Score: 38.09168541922346
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent research has highlighted the importance of data quality in scaling large language models (LLMs). However, automated data quality control faces unique challenges in collaborative settings where sharing is not allowed directly between data silos. To tackle this issue, this paper proposes a novel data quality control technique based on the notion of data influence on the training dynamics of LLMs, that high quality data are more likely to have similar training dynamics to the anchor dataset. We then leverage the influence of the training dynamics to select high-quality data from different private domains, with centralized model updates on the server side in a collaborative training fashion by either model merging or federated learning. As for the data quality indicator, we compute the per-sample gradients with respect to the private data and the anchor dataset, and use the trace of the accumulated inner products as a measurement of data quality. In addition, we develop a quality control evaluation tailored for collaborative settings with heterogeneous domain data. Experiments show that training on the high-quality data selected by our method can often outperform other data selection methods for collaborative fine-tuning of LLMs, across diverse private domain datasets, in medical, multilingual and financial settings. Our code is released at github.com/Ryan0v0/CLUES.
Related papers
- LLM Data Selection and Utilization via Dynamic Bi-level Optimization [100.20933466418786]
We propose a new Data Weighting Model (DWM) to adjust the weight of selected data within each batch to achieve a dynamic data utilization during training.<n>Our experiments demonstrate that DWM enhances the performance of models trained with randomly-selected data.<n>We further analyze how a model's data preferences evolve throughout training, providing new insights into the data preference of the model during training.
arXiv Detail & Related papers (2025-07-22T02:47:12Z) - IDEAL: Data Equilibrium Adaptation for Multi-Capability Language Model Alignment [29.703775936837012]
Large Language Models (LLMs) have achieved impressive performance through Supervised Fine-tuning (SFT) on diverse instructional datasets.<n>When training on multiple capabilities simultaneously, the mixture training dataset, governed by volumes of data from different domains, is a critical factor that directly impacts the final model's performance.<n>We introduce an innovative data equilibrium framework designed to effectively optimize volumes of data from different domains within mixture SFT datasets.
arXiv Detail & Related papers (2025-05-19T06:42:44Z) - DataMIL: Selecting Data for Robot Imitation Learning with Datamodels [77.48472034791213]
We introduce DataMIL, a policy-driven data selection framework built on the datamodels paradigm.<n>Unlike standard practices that filter data using human notions of quality, DataMIL directly optimize data selection for task success.<n>We validate our approach on a suite of more than 60 simulation and real-world manipulation tasks.
arXiv Detail & Related papers (2025-05-14T17:55:10Z) - Call for Rigor in Reporting Quality of Instruction Tuning Data [7.284192559306471]
Studies emphasize the significance of the quality of instruction tuning (IT) data.<n>We demonstrate the potential problems arising from this practice and emphasize the need for careful consideration in verifying data quality.
arXiv Detail & Related papers (2025-03-04T02:04:58Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - Data Quality Control in Federated Instruction-tuning of Large Language Models [43.29678396558287]
Federated Learning enables privacy-preserving collaborative instruction tuning of large language models.<n>Local clients lack global visibility to filter noisy or low-quality samples before training.<n>We propose FedDQC, a novel federated instruction tuning framework with dynamic data quality control.
arXiv Detail & Related papers (2024-10-15T12:14:57Z) - Enhancing Data Quality in Federated Fine-Tuning of Foundation Models [54.757324343062734]
We propose a data quality control pipeline for federated fine-tuning of foundation models.
This pipeline computes scores reflecting the quality of training data and determines a global threshold for a unified standard.
Our experiments show that the proposed quality control pipeline facilitates the effectiveness and reliability of the model training, leading to better performance.
arXiv Detail & Related papers (2024-03-07T14:28:04Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z) - DsDm: Model-Aware Dataset Selection with Datamodels [81.01744199870043]
Standard practice is to filter for examples that match human notions of data quality.
We find that selecting according to similarity with "high quality" data sources may not increase (and can even hurt) performance compared to randomly selecting data.
Our framework avoids handpicked notions of data quality, and instead models explicitly how the learning process uses train datapoints to predict on the target tasks.
arXiv Detail & Related papers (2024-01-23T17:22:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.