De-Fake: Style based Anomaly Deepfake Detection
- URL: http://arxiv.org/abs/2507.03334v2
- Date: Mon, 14 Jul 2025 05:02:35 GMT
- Title: De-Fake: Style based Anomaly Deepfake Detection
- Authors: Sudev Kumar Padhi, Harshit Kumar, Umesh Kashyap, Sk. Subidh Ali,
- Abstract summary: Face-swap deepfakes are used to spread false information, damage reputations, manipulate political opinions, create non-consensual intimate deepfakes (NCID), and exploit children.<n>Existing deepfake detection methods rely on facial landmarks or inconsistencies in pixel-level features.<n>We develop SafeVision, which offers a reliable and scalable solution for detecting face-swaps in a privacy preserving manner.
- Score: 4.62170384991303
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting deepfakes involving face-swaps presents a significant challenge, particularly in real-world scenarios where anyone can perform face-swapping with freely available tools and apps without any technical knowledge. Existing deepfake detection methods rely on facial landmarks or inconsistencies in pixel-level features and often struggle with face-swap deepfakes, where the source face is seamlessly blended into the target image or video. The prevalence of face-swap is evident in everyday life, where it is used to spread false information, damage reputations, manipulate political opinions, create non-consensual intimate deepfakes (NCID), and exploit children by enabling the creation of child sexual abuse material (CSAM). Even prominent public figures are not immune to its impact, with numerous deepfakes of them circulating widely across social media platforms. Another challenge faced by deepfake detection methods is the creation of datasets that encompass a wide range of variations, as training models require substantial amounts of data. This raises privacy concerns, particularly regarding the processing and storage of personal facial data, which could lead to unauthorized access or misuse. Our key idea is to identify these style discrepancies to detect face-swapped images effectively without accessing the real facial image. We perform comprehensive evaluations using multiple datasets and face-swapping methods, which showcases the effectiveness of SafeVision in detecting face-swap deepfakes across diverse scenarios. SafeVision offers a reliable and scalable solution for detecting face-swaps in a privacy preserving manner, making it particularly effective in challenging real-world applications. To the best of our knowledge, SafeVision is the first deepfake detection using style features while providing inherent privacy protection.
Related papers
- FaceTracer: Unveiling Source Identities from Swapped Face Images and Videos for Fraud Prevention [68.07489215110894]
FaceTracer is a framework specifically designed to trace the identity of the source person from swapped face images or videos.<n>In experiments, FaceTracer successfully identified the source person in swapped content and enabling the tracing of malicious actors involved in fraudulent activities.
arXiv Detail & Related papers (2024-12-11T04:00:17Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
We propose a hardware-level face de-identification method to solve this vulnerability.
We also propose an anonymization framework that generates a new face using the privacy-preserving image, face heatmap, and a reference face image from a public dataset as input.
arXiv Detail & Related papers (2024-03-31T19:28:04Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
Face forgery generation technologies generate vivid faces, which have raised public concerns about security and privacy.
Although face forgery detection has successfully distinguished fake faces, recent studies have demonstrated that face forgery detectors are very vulnerable to adversarial examples.
arXiv Detail & Related papers (2023-10-18T14:49:54Z) - Information-containing Adversarial Perturbation for Combating Facial
Manipulation Systems [19.259372985094235]
Malicious applications of deep learning systems pose a serious threat to individuals' privacy and reputation.
We propose a novel two-tier protection method named Information-containing Adversarial Perturbation (IAP)
We use an encoder to map a facial image and its identity message to a cross-model adversarial example which can disrupt multiple facial manipulation systems.
arXiv Detail & Related papers (2023-03-21T06:48:14Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
We investigate the face privacy protection from a technology standpoint based on a new type of customized cloak.
We propose a new method, named one person one mask (OPOM), to generate person-specific (class-wise) universal masks.
The effectiveness of the proposed method is evaluated on both common and celebrity datasets.
arXiv Detail & Related papers (2022-05-24T11:29:37Z) - Robust Face-Swap Detection Based on 3D Facial Shape Information [59.32489266682952]
Face-swap images and videos have attracted more and more malicious attackers to discredit some key figures.
Previous pixel-level artifacts based detection techniques always focus on some unclear patterns but ignore some available semantic clues.
We propose a biometric information based method to fully exploit the appearance and shape feature for face-swap detection of key figures.
arXiv Detail & Related papers (2021-04-28T09:35:48Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
We propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks.
TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models.
arXiv Detail & Related papers (2020-03-15T12:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.