Unlearning the Noisy Correspondence Makes CLIP More Robust
- URL: http://arxiv.org/abs/2507.03434v1
- Date: Fri, 04 Jul 2025 09:45:11 GMT
- Title: Unlearning the Noisy Correspondence Makes CLIP More Robust
- Authors: Haochen Han, Alex Jinpeng Wang, Peijun Ye, Fangming Liu,
- Abstract summary: Noisy Correspondence (NC) samples significantly impair the performance of Vision-Language Models (VLMs)<n>We propose NCU, a Noisy Correspondence Unlearning fine-tuning framework that efficiently enhances VLMs' robustness by forgetting learned noisy knowledge.<n>We validate our approach with the prevailing CLIP model over various downstream tasks.
- Score: 13.619912296579402
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The data appetite for Vision-Language Models (VLMs) has continuously scaled up from the early millions to billions today, which faces an untenable trade-off with data quality and inevitably introduces Noisy Correspondence (NC) samples. Undoubtedly, such semantically unrelated data significantly impairs the performance of VLMs. Previous efforts mainly address this challenge by estimating refined alignment for more precise guidance. However, such resource-intensive pipelines that train VLMs from scratch struggle to meet realistic data demands. In this paper, we present a brand new perspective that seeks to directly eliminate the harmful effects of NC in pre-trained VLMs. Specifically, we propose NCU, a Noisy Correspondence Unlearning fine-tuning framework that efficiently enhances VLMs' robustness by forgetting learned noisy knowledge. The key to NCU is learning the hardest negative information, which can provide explicit unlearning direction for both false positives and false negatives. Such twin goals unlearning process can be formalized into one unified optimal transport objective for fast fine-tuning. We validate our approach with the prevailing CLIP model over various downstream tasks. Remarkably, NCU surpasses the robust pre-trained method on zero-shot transfer while with lower computational overhead. The code will be released upon acceptance.
Related papers
- FREE: Fast and Robust Vision Language Models with Early Exits [5.402030962296633]
We introduce FREE, an adversarial training approach within a GAN-based framework.<n>Our method focuses on performing input-adaptive inference that increases inference speed with minimal drop in performance.<n>We experimentally validate that our method speeds up the inference process by more than 1.51x while retaining comparable performance.
arXiv Detail & Related papers (2025-06-07T18:26:58Z) - Synthetic Data is an Elegant GIFT for Continual Vision-Language Models [52.343627275005026]
GIFT is a novel continual fine-tuning approach to overcome catastrophic forgetting in Vision-Language Models.<n>We employ a pre-trained diffusion model to recreate both pre-training and learned downstream task data.<n>Our method consistently outperforms previous state-of-the-art approaches across various settings.
arXiv Detail & Related papers (2025-03-06T09:09:18Z) - SPARC: Score Prompting and Adaptive Fusion for Zero-Shot Multi-Label Recognition in Vision-Language Models [74.40683913645731]
Zero-shot multi-label recognition (MLR) with Vision-Language Models (VLMs) faces significant challenges without training data, model tuning, or architectural modifications.<n>Our work proposes a novel solution treating VLMs as black boxes, leveraging scores without training data or ground truth.<n>Analysis of these prompt scores reveals VLM biases and AND''/OR' signal ambiguities, notably that maximum scores are surprisingly suboptimal compared to second-highest scores.
arXiv Detail & Related papers (2025-02-24T07:15:05Z) - MEOW: MEMOry Supervised LLM Unlearning Via Inverted Facts [29.593170782882563]
Large Language Models (LLMs) can memorize sensitive information, raising concerns about potential misuse.
Previous practices face three key challenges: Utility, efficiency, and robustness.
We propose MEOW, a gradient descent-based unlearning method.
arXiv Detail & Related papers (2024-09-18T09:55:48Z) - Towards Robust and Parameter-Efficient Knowledge Unlearning for LLMs [25.91643745340183]
Large Language Models (LLMs) have demonstrated strong reasoning and memorization capabilities via pretraining on massive textual corpora.<n>This poses risk of privacy and copyright violations, highlighting the need for efficient machine unlearning methods.<n>We propose Low-rank Knowledge Unlearning (LoKU), a novel framework that enables robust and efficient unlearning for LLMs.
arXiv Detail & Related papers (2024-08-13T04:18:32Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
Domain-Class Incremental Learning is a realistic but challenging continual learning scenario.
To handle these diverse tasks, pre-trained Vision-Language Models (VLMs) are introduced for their strong generalizability.
This incurs a new problem: the knowledge encoded in the pre-trained VLMs may be disturbed when adapting to new tasks, compromising their inherent zero-shot ability.
Existing methods tackle it by tuning VLMs with knowledge distillation on extra datasets, which demands heavy overhead.
We propose the Distribution-aware Interference-free Knowledge Integration (DIKI) framework, retaining pre-trained knowledge of
arXiv Detail & Related papers (2024-07-07T12:19:37Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
Large language models (LLMs) have achieved significant progress from pre-training on and memorizing a wide range of textual data.
This process might suffer from privacy issues and violations of data protection regulations.
We propose an efficient unlearning framework that could efficiently update LLMs without having to retrain the whole model after data removals.
arXiv Detail & Related papers (2023-10-31T03:35:59Z) - Task Residual for Tuning Vision-Language Models [69.22958802711017]
We propose a new efficient tuning approach for vision-language models (VLMs) named Task Residual Tuning (TaskRes)
TaskRes explicitly decouples the prior knowledge of the pre-trained models and new knowledge regarding a target task.
The proposed TaskRes is simple yet effective, which significantly outperforms previous methods on 11 benchmark datasets.
arXiv Detail & Related papers (2022-11-18T15:09:03Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.